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Abstract (250 words) 16 

The body of research on visual working memory (VWM) – the system often described as a 17 

limited memory store of visual information in service of ongoing tasks – is growing rapidly. The 18 

discovery of numerous related phenomena, and the many subtly different definitions of working 19 

memory, signify a challenge to maintain a coherent theoretical framework to discuss concepts, 20 

compare models and design studies. A lack of robust theory development has been a noteworthy 21 

concern in the psychological sciences, thought to be a precursor to the reproducibility crisis 22 

(Oberauer & Lewandowsky, 2019). I review the theoretical landscape of the VWM field by 23 

examining two prominent debates – whether VWM is object-based or feature-based, and 24 

whether discrete-slots or variable-precision best describe VWM limits. I share my concerns 25 

about the dualistic nature of these debates and the lack of clear model specification that prevents 26 

fully determined empirical tests. In hopes of promoting theory development, I provide a working 27 

theory map by using the broadly encompassing Memory for Latent Representations model 28 

(Hedayati et al., 2022) as a scaffold for relevant phenomena and current theories. I illustrate how 29 

opposing viewpoints can be brought into accordance, situating leading models of VWM to better 30 

identify their differences and improve their comparison. The hope is that the theory map will 31 

help VWM researchers get on the same page – clarifying hidden intuitions and aligning varying 32 

definitions – and become a useful device for meaningful discussions, development of models, 33 

and definitive empirical tests of theories. 34 
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Introduction 38 

What is visual working memory (VWM)? A generic introduction favored by researchers 39 

is that VWM is the system responsible for maintaining visual information in a state of 40 

heightened accessibility for ongoing perception and cognition. However, the temporary storage 41 

of visual information is far more complex than is encapsulated by this core definition. The 42 

flexible and multifaceted nature of the VWM system is evident in the wealth of diverse but 43 

related empirical phenomena – attractive and repulsive biases in recall, both feature-based and 44 

object-based encoding effects, sustained and activity-silent neural representations, and more. 45 

Further, the VWM system is interconnected with perceptual and long-term memory systems 46 

(Atkinson & Shiffrin, 1968; Cowan, 1999; Schneider & Shiffrin, 1977; Teng & Kravitz, 2019). It 47 

is also not straightforward to disentangle the aforementioned generic definition from a broad 48 

definition of visual attention, which most would also define as heightening accessibility to visual 49 

information and is thought to be limited. This overall ambiguity may be one cause for the 50 

proliferation of subtly different definitions of working memory (Cowan, 2017), and various 51 

verbal theories and computational models of working memory (Logie et al., 2021; Oberauer et 52 

al., 2018).  53 

 54 

Table 1 55 

Chapter and Authors Definition 

A Multicomponent Model of 
Working Memory – Alan 
Baddeley, Graham Hitch, and 
Richard Allen 

A limited capacity system for the temporary maintenance 
and processing of information in the support of cognition 
and action. 

An Embedded-Processes The ensemble of components of the mind that hold a 
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Approach to Working Memory - 
Nelson Cowan, Candice C. 
Morey, and Moshe Naveh-
Benjamin 

limited amount of information temporarily in a heightened 
state of availability for use in ongoing information 
processing. 

The Time-Based Resource-
Sharing Model of Working 
Memory – Pierre Barrouillet 
and Valérie Camos 

WM is the structure where mental representations are built, 
maintained, and modified according to our goals. 

Towards a Theory of Working 
Memory From Metaphors to 
Mechanisms – Klaus Oberauer 

WM is a medium for building, holding, and manipulating 
temporary representations that control our current thoughts 
and actions. 

Multicomponent Working 
Memory System with 
Distributed Executive Control – 
André Vandierendonck 

WM is the part of the memory system used to support goal-
directed activities. This support includes maintaining the 
task goal, the selected way to achieve this goal, and the 
constraints or limitations of this achievement. The WM 
system also maintains all interim results so as to enable 
continuation after task interruption. 

Individual Differences in 
Attention Control Implications 
for the Relationship Between 
Working Memory Capacity and 
Fluid Intelligence – Cody A. 
Mashburn, Jason S. Tsukahara, 
and Randall W. Engle 

We define working memory as the cognitive system that 
permits the maintenance of goal-relevant information. 
More structurally, working memory comprises domain-
general executive attention coupled with domain-specific 
short-term memories. We regard short-term memory as 
those aspects of long-term memory residing above some 
activation threshold, making them available or potentially 
available to influence ongoing cognition, as well as those 
processes necessary to keep this activation above threshold 
(e.g. subvocal rehearsal). 

Working Memory and Expertise 
An Ecological Perspective – 
David Z. Hambrick, Alexander 
P. Burgoyne, and Duarte Araujo 

In the spirit of Boring (1923), we define working memory 
capacity (WMC) as whatever is measured by the 
psychological instruments that the field can agree to call 
working memory tasks. We are agnostic about which 
theory and definition of working memory is the ‘right’ one. 
Taking an ecological perspective, we view working 
memory performance in terms of the relationship between 
the person (including knowledge, skills, and abilities) and 
The environment (including objects and other affordances). 
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Domain-Specific Working 
Memory Perspectives from 
Cognitive Neuropsychology – 
Randi C. Martin, Brenda Rapp, 
and Jeremy Purcell 

Storage systems dedicated to maintenance of specific types 
of information that are crucial for operation of the system. 

Remembering Over the Short 
and Long Term Empirical 
Continuities and Theoretical 
Implications – Patricia A. 
Reuter-Lorenz and Alexandru D. 
Iordan 

WM is a capacity-limited system for the short-term 
maintenance and manipulation of (domain-specific) 
information held actively in mind, and commensurate with 
the notion of the ‘activated portion of long term memory 
(LTM)’. We advocate for better integration of 
psychologically and neurally informed construct 
development. 

Manifold Visual Working 
Memory – Nicole Hakim, 
Edward Awh, and Edward K. 
Vogel 

We endorse the embedded-processes model, which puts 
working memory (WM) in the context of other types of 
memory. However, we define WM as the processes that 
maintain a limited amount of information via active neural 
firing. Therefore, our view of WM closely aligns with the 
embedded-processes model’s definition of the focus of 
attention. 

Cognitive Neuroscience of 
Visual Working Memory – 
Bradley R. Postle 

The ability to hold information in an accessible state—in 
the absence of relevant sensory input—to transform it when 
necessary, and to use it to guide behaviour in a flexible, 
context-dependent manner 

A Dynamic Field Theory of 
Visual Working Memory – 
Sobanawartiny Wijeakumar and 
John Spencer 

In dynamic field theory (DFT), WM is an attractor state 
where representations are self-sustained through strong 
recurrent interactions between excitation and inhibition. 

Integrating Theories of Working 
Memory – Robert H. Logie, 
Clément Belletier, and Jason M. 
Doherty 

Our hypothesis is that WM is a collection of domain-
specific temporary memory stores and cognitive functions 
that work in concert to support task performance. Detailed 
definitions vary according to the research questions and the 
level of explanation being addressed rather than because of 
fundamental theoretical differences. 

Table 1: Definitions of working memory provided by authors (in italics) for each chapter in the 56 
recently published Working Memory: State of the Science (Logie et al., 2020). 57 
 58 
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The expansive growth of VWM research poses not only the challenge of building an 59 

integrative theory that encapsulates all related phenomena, but to also maintain a coherent 60 

framework to discuss concepts and theories within. Subtle differences in definition and models 61 

are likely to have resulted from disparate research questions, using varying measures and levels 62 

of analysis, but may not actually reflect theoretical adversity (Logie et al., 2021). As such, the 63 

field risks its common theoretical core unraveling. An underscored precursor to the 64 

reproducibility crisis in the psychological sciences has been the lack of direct connection from 65 

experiments and tested hypotheses to the underlying theory (Guest & Martin, 2021; Klein, 2014; 66 

Meehl, 1978; Oberauer & Lewandowsky, 2019; Scheel et al., 2021). That is, an over-reliance on 67 

the hypothetico-deductive method and null-hypothesis significance testing without substantial 68 

groundwork to construct collective theories has hindered progress in the psychological sciences 69 

(Borsboom et al., 2021; Devezer & Buzbas, 2023; Meehl, 1978). 70 

Just as the lack of rigorous theory development is being scrutinized across psychology, 71 

our field is beginning its own introspection. To curb the idiosyncratic nature of theory 72 

development, eminent researchers collectively set initial benchmarks for VWM models 73 

(Oberauer et al., 2018), and have begun to scrutinize the auxiliary assumptions of such models 74 

(Robinson et al., 2022; Williams et al., 2022). A recent thoughtful introspection of the VWM 75 

field by Vencislav Popov reveals concerns that the development and evaluation of formal 76 

models, while needed, will not be enough to produce a convincing theory of memory (Popov, 77 

2023). It is clear the field could benefit from a concerted constructive effort in establishing a 78 

coordinated framework from which to structure well-determined specifications from theory 79 

and/or model to hypotheses about observed empirical phenomena (Borsboom et al., 2021; 80 

Maatman, 2021; Scheel et al., 2021).  81 
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As a step towards a refined theoretical framework, especially one that is productive for 82 

discussing and conducting research, I review current theoretical debates in the VWM field 83 

(object-based versus feature-based and discrete-slots versus variable precision) and revamp 84 

them in the form of a theory map. There are an immense number of related phenomena and 85 

models that the field needs to keep track of, and so the idea is to create something that helps us 86 

make sense of the theoretical landscape – a map. The theory map is an illustrative representation 87 

to help navigate thinking about how a set of VWM phenomena are linked to a set of functional 88 

mechanisms. I adopted the Memory for Latent Representation (MLR) model (Hedayati et al., 89 

2022) as the scaffold, given that it includes a diverse set of ways that information can be stored 90 

and has multiple different capacities that can accommodate existing theoretical positions (see 91 

Figure 1). The goal of this review is not to be prescriptive about what is considered VWM and 92 

what is not, nor to identify which of our current models is most accurate, nor to advance MLR as 93 

the correct model. The goal is to provide a rich synthesis of the extant VWM field and push for 94 

an integrative, coherent foundation (see Nobre (2022) for a call to updating the standard 95 

paradigm and integrating working memory research from various domains). Like old world maps 96 

that were not perfectly accurate but still critical for navigation and exploration, the theory map is 97 

not to be taken as an exact attempt of a unifying theory but to establish a space within which the 98 

wider field can start to examine where various models may be reconcilable or incompatible. The 99 

hope is that it unifies the language and understanding of our field in a way that promotes clearer 100 

situation and specification of VWM models and phenomena – reducing disagreements that have 101 

resulted from subtle differences of definition (Cowan, 2017). Ultimately, I hope to help 102 

researchers better define their hypotheses and tests to enable study designs that achieve incisive 103 

inferences. 104 
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A brief summary of recent visual working memory research 105 

The hallmark of visual working memory is its sharply limited capacity, in contrast to the 106 

long-term memory (LTM) system which is thought to be immeasurably vast in its capacity. The 107 

intense focus of much research on the limited capacity of VWM (Adam et al., 2017; Alvarez & 108 

Cavanagh, 2004; Bays & Husain, 2008; Fukuda et al., 2010; Luck & Vogel, 1997; Ngiam et al., 109 

2022; Olson & Jiang, 2002; Vogel et al., 2001, 2006; W. Zhang & Luck, 2008) has brought 110 

about the discovery of numerous phenomena and methods of measurement, as well as a plethora 111 

of theories and models to describe and explain them (Bays & Husain, 2008; Brady et al., 2011; 112 

Cowan, 1999; Hedayati et al., 2022; Oberauer & Lin, 2017; Rouder et al., 2008; Schurgin et al., 113 

2020; W. Zhang & Luck, 2008). I will provide what can only be a narrow summary of this 114 

research to illustrate the theoretical landscape of the VWM field – note that substantial empirical 115 

research has occurred with aims beyond characterizing the capacity limit. 116 

In the seminal study of Luck and Vogel (1997), this capacity limit was estimated to be 117 

approximately four items’ worth, after they observed that accurate change-detection performance 118 

dropped only when the memory arrays exceeded four items. This pattern appeared to be 119 

unchanged by the addition of simple features to these items, such that the capacity limit seemed 120 

to be defined by feature-integrated objects – what is now well-known as the slots model. In 121 

opposition to this, others have since found change-detection performance varied with the 122 

complexity of the to-be-remembered stimuli (Alvarez & Cavanagh, 2004) – an indication that it 123 

was the number of features, and not the number of objects that determined the capacity limit – 124 

what is now well-known as the resources model. This gave rise to an initial framework 125 

motivating research of the VWM system – slots versus resources. 126 
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This initial framework still influences current research, which pit various forms of slot 127 

models and resource models against each other. This can be seen in two prominent debates in the 128 

field; one being comparisons of object-based versus feature-based models when examining 129 

memory for multi-featured stimuli (Fougnie et al., 2012; Fougnie & Alvarez, 2011; Hardman & 130 

Cowan, 2015; Markov et al., 2019; Sone et al., 2021), and the other being discrete-slots versus 131 

variable-precision models when examining change-detection or delayed recall (Ma et al., 2014; 132 

Nosofsky & Donkin, 2016; Nosofsky & Gold, 2018; Rouder et al., 2008; van den Berg et al., 133 

2014; W. Zhang & Luck, 2008). There are various signs that revising the theoretical framework 134 

may be needed in both these debates. 135 

Comparing object-based and feature-based models of VWM 136 

The initial slots versus resources debate on how to characterize capacity limits was 137 

related to questions on how content was represented in VWM. A natural expectation is that to 138 

first understand capacity limits, we must first understand the unit of representation to measure 139 

VWM by. The initial slots model argued that the ceiling was determined by a fixed number of 140 

slots devoted to feature-integrated objects (Luck & Vogel, 1997). Many took this 141 

characterization of the capacity limit to suggest the rigid representation of information as objects 142 

(the strong object model). Proponents of resource models have argued that capacity limits are 143 

determined by allocation of resources to features, citing the diminishing capacity with 144 

increasingly complex items (Alvarez and Cavanagh, 2004). Most researchers hoping to uncover 145 

the unit of representation in VWM have since asked whether it is object-based or feature-based 146 

in a binary manner (Fougnie et al., 2010; Shin & Ma, 2017), despite these seminal papers 147 

(Alvarez & Cavanagh, 2004; Luck & Vogel, 1997) not exactly appealing for a purely object-148 

based or purely feature-based account respectively. 149 
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It is likely that the answer is not one or the other, but both in some manner (Fougnie et 150 

al., 2010; Markov et al., 2019; Shin & Ma, 2017). Consider the phenomena that have been 151 

documented in the literature – recall is improved when information is stored as objects, known as 152 

the object-based benefit (Fougnie et al., 2012), but also features have been found to be forgotten 153 

independently (Fougnie & Alvarez, 2011; Hardman & Cowan, 2015; Markov et al., 2019). The 154 

recall for features of an object (e.g. its color and its orientation) has been observed to be 155 

independent (Bays et al., 2011; Shin & Ma, 2017), yet shown to also be strongly associated and 156 

integrated (Li et al., 2022; Sone et al., 2021). Indeed, these object-based and feature-based 157 

phenomena have been observed occurring in concert in a recent study using a novel experimental 158 

paradigm – whole-report with conjunction stimuli (Ngiam et al., 2023). If a researcher accepts 159 

that both object-based and feature-based phenomena co-occur in VWM, then the dualistic debate 160 

with object-based versus feature-based model comparisons is unhelpful. Instead, researchers will 161 

need to better motivate their studies, by specifying whether their model or theory aims to provide 162 

a mechanism which explains a given set of effects, or does aim to explain both sets of effects, 163 

and conduct empirical studies accordingly. Indeed, the more precise measurement and careful 164 

characterization of these phenomena will aid model development. 165 

Comparing discrete-slots and variable-precision models of VWM 166 

The main arena for discrete-slots versus variable-precision model comparisons has been 167 

on continuous report studies, where the precision of observers’ working memory recall can be 168 

measured with a circular wheel (Bays & Husain, 2008; Wilken & Ma, 2004; W. Zhang & Luck, 169 

2008). One direct mechanistic contrast between these classes of models is their explanation for 170 

guessing behaviors. Discrete-slots models suggest a zero-information state (having no 171 

representation of the to-be-remembered stimuli in memory) and this results in random 172 
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responding. On the other hand, variable precision models typically deny a zero-information state, 173 

suggesting that all responses can be explained by variation in memory strength due to noise. This 174 

has left researchers to attempt to decipher whether responses are a result of uninformed behavior 175 

from a lack of representation or very imprecise responding from noisy representations. It has 176 

been raised that this distinction is impossible to make with standard continuous report studies 177 

because models may mimic each other (Adam et al., 2017). In simulations, Adam et al. (2017) 178 

reported that a million noise-free samples would be needed to successfully distinguish responses 179 

that did in fact result from a memory representation that was widely imprecise (a von Mises 180 

probability distribution with a standard deviation of 193 degrees) but nevertheless did exist, and 181 

not from random responding posited due to having no representation. Indeed, a factorial model 182 

comparison of discrete-slots and variable-precision models found it would end in a stalemate 183 

with standard continuous report tasks (van den Berg et al., 2014).  184 

A critical argument for an upper bound on the number of discrete representations in 185 

VWM is the existence of responses based on zero-information states (‘true guesses’). A recent 186 

study attempted to break the deadlock between discrete-slots and variable-precision models by 187 

reconfiguring the continuous report task to produce a signature of pure guessing that 188 

distinguishes it from imprecise memories (Ngiam et al., 2022). Despite finding evidence for 189 

guessing responses that cannot straightforwardly be explained by a noisy memory, the authors 190 

noted that the finding does not determine whether VWM resources are discrete or continuous in 191 

nature – the observed data could be explained by a version from both discrete and continuous 192 

classes of models if they are allowed some modifications. Indeed, this is a usual retort by 193 

proponents of pure resource-based or resource-rational models – that modern resource models 194 

can account for such zero-precision estimates without an additional mechanism (Bays et al., 195 
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2022; Schneegans et al., 2020; van den Berg & Ma, 2018). Then, it is unclear what data and what 196 

evidence would be needed to deterministically decide between existing models of VWM. 197 

I believe both classes of models, as all working scientific theories do, have their 198 

shortcomings – the discrete-slots models do not explicitly provide a clear mechanism for how 199 

working memory representations can be variably noisy, and the variable-precision models do not 200 

provide a strict constraint on how resources are distributed across memoranda and may give rise 201 

to item limits or object-based benefits (Oberauer et al., 2016). Although hotly contested, much 202 

like the object-based versus feature-based debate discussed above, it is likely that the nature of 203 

VWM is both discrete (say object-based representations) and continuous (say noisy 204 

representations) in some way – perhaps by possessing mechanisms at both levels of 205 

representation and/or due to flexibility in the system. Improving instruments to better measure 206 

visual working memory phenomena will likely lead to better evaluation of models, but what is 207 

needed is also the better specification of these models in relation to observed phenomena to 208 

allow for more severe tests and then stronger inferences. 209 

Issues conducting research without a well-specified theoretical framework 210 

As an illustrative example of the difficulty in resolving scientific debates, take the 211 

challenge of researching the nature of VWM capacity limits by comparing discrete versus 212 

continuous theories. As defined above, discrete models propose a maximum number of items 213 

being represented in VWM. They do not typically specify a mechanism for the representation of 214 

features (say within a slot) or by which noise or uncertainty is introduced into the representation 215 

(but see the slots-plus-averaging model (W. Zhang & Luck, 2008)). As such researchers may 216 

assume the strict version of the slot model where memory for features exist only within 217 

integrated objects in WM, are noiseless (or are of fixed noise), and lost in an all-or-none fashion 218 
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(“the strong object model”). One might conduct a formal model comparison between this 219 

specific strong object model against a continuous resources model which provides flexibility in 220 

its explanation and prediction in any of those regards. When the strong object model ultimately 221 

fits the observed data poorly, researchers may erroneously bundle assumptions and infer that no 222 

discrete slot explanation of the phenomena can be accurate, presenting their findings as evidence 223 

of “confirming” their alternative continuous resource model. Rather the most accurate inference 224 

is that the findings have falsified the specific strong object model but not all versions of the 225 

discrete-slot model (say for example, weak object models that are some-or-none). But note that 226 

the criticism that discrete models do not always provide an explicit explanation for noisy 227 

representations is a valid one. Unfortunately, the severity of the inference that can be made is 228 

limited by poor model specification – the model comparison does not specify mechanisms at a 229 

level of detail sufficient to choose a definitive victor. 230 

Thus, a prevailing factor that impedes progress is that a lack of specification in VWM 231 

models has meant research is unable to produce evidence that strongly determines one theory 232 

over another (Maatman, 2021; Meehl, 1990), though researchers often make the declaration they 233 

have found evidence that favors one class of models and dismiss the other. A lack of 234 

specification can enable flexibility in a model such that ad hoc changes allow the model to 235 

account for any and all empirical results, skirting any strong test (Navon, 1984). One further 236 

danger of underdetermination from unspecific theories and obtuse studies is that it allows 237 

researchers to bundle assumptions of an opposing model as to create a straw-man for it to be 238 

outcompeted (as the above example hoped to illustrate).  239 
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 240 

Figure 1. A simplified schematic of the Memory for Latent Representations (MLR) model 241 
architecture (Hedayati et al., 2022) with visual working memory phenomena and current models 242 
mapped on to its components: the variational autoencoder (VAE), the binding pool, and the 243 
tokens. This theory map aims to provide a coherent framework within which to organize visual 244 
working memory phenomena and discuss the relevant explanatory models. As such, the 245 
compatibility or inconsistencies between models can be better identified, and subsequently 246 
tested. For example, one could use a working definition for the noisy representation in VWM as 247 
the noise held in the pattern of neuron activity in the binding pool that follows a summation of 248 
information from various perceptual sources.  249 

Initial steps to a working theory map of visual working memory 250 

In my view, by and large, more progress could be achieved by rethinking our theoretical 251 

framework and broadly adopting a model-based approach (Devezer & Buzbas, 2023) so as to 252 

specify and examine how VWM actually operates and gives rise to its sharp capacity limit and 253 

other extant phenomena. A fixation on understanding the exact representative unit of VWM to 254 

characterize its capacity limit, a remnant of the slots versus resources comparisons, remains 255 

pervasive in shaping current research approaches. One might reasonably expect the VWM 256 
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system to operate in a flexible manner to accommodate different demands (Boettcher et al., 257 

2021; Nasrawi & van Ede, 2022; van Ede, 2020; van Ede & Nobre, 2023). If one accepts that to 258 

be the case, finding a highly specific format for working memory that explains all observed 259 

phenomena might be a hapless pursuit.  260 

In an attempt to address the aforementioned challenges of promoting construction of a 261 

broader theoretical framework, I created a theory map by situating modern VWM models onto 262 

the Memory for Latent Representations (MLR) model (Hedayati et al., 2022). Using an existing 263 

model to scaffold the theory map may be puzzling to some. This choice was made in-part to 264 

avoid the theory map being interpreted as introducing an entirely new model altogether – 265 

something I believe would be largely redundant and not so helpful for the field. To reiterate, the 266 

goal is to compare and contrast the existing models in the literature, and show that those models 267 

have mechanisms that can somewhat overlap and integrate. And by demonstrating that is the 268 

case, it will emphasize that clear specification and thoughtful experimental design is needed to 269 

identify and subsequently test where existing models are in disagreement.  270 

The MLR model provides a suitable basis for the theory map for many reasons. To 271 

briefly introduce the MLR model, it consists of multiple subsystems that encapsulates what many 272 

may broadly consider to be (or interact with) VWM. It is built with functional neural 273 

mechanisms that are computationally implemented, providing various specific pathways for how 274 

visual information may be represented and what limitations might exist. The specific 275 

implementation of various memory mechanisms makes it ideal for pinning down the theoretical 276 

landscape of VWM that may presently be too nebulous to effectively be mapped with language, 277 

boxes and arrows. Further, as the MLR contains multiple subsystems, one can visualize various 278 

notable theoretical proposals – for example, structured hierarchical representations (Brady et al., 279 
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2011; Cowan, 1999) and partial packaging of features into objects (Shin & Ma, 2017). I want to 280 

stress that the MLR model is used simply as a starting point for a map – and it does not cover the 281 

entire possible theoretical space, nor is it claimed that the MLR model is more accurate in 282 

comparison to other models. But here, by mapping existing VWM models and concepts to this 283 

scaffold, I hope the field better defines the VWM phenomena that are observed and better 284 

specifies what each existing VWM model attempts to and does successfully explain. In 285 

completing this exercise, I also hope to provide a taxonomy of existing WM models with an 286 

accompanying summary. The result is an initial schema of VWM models – a broad theoretical 287 

framework, detailing various phenomena and how they are explained by various theories.  288 

The goal is that the theory map will help researchers better scrutinize where different 289 

models may be harmonious or at odds in their explanations of various phenomena. It may also 290 

provide a common language or platform for researchers to discuss their varying perspectives on 291 

how the VWM system operates. VWM models have vastly and rapidly evolved since their initial 292 

slot or resource conceptions, and the wider field may not have kept track of the key data and 293 

subsequent critical changes to the models (Bays et al., 2022). For example, despite the strong 294 

object model generally being disproven (Hardman & Cowan, 2015; Olson & Jiang, 2002) and 295 

not currently widely believed, its specification and ideas continue to feature in research in 296 

various ways (Robinson et al., 2022; Williams et al., 2022). The hope is to inspire researchers to 297 

consider what may require substantial theoretical construction and specification, and where 298 

research may perhaps be best targeted to advance our understanding of VWM. 299 

A primer of the Memory for Latent Representations (MLR) model 300 

The MLR model architecture consists of two main components: a variational autoencoder 301 

(VAE) and a token-based binding pool (BP) (Figure 1). The VAE contains layers of neurons 302 
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arranged in a bowtie shape – the input layer contains many neurons, contracting to a very small 303 

number of neurons in the middle, before expanding back out to an output layer with many 304 

neurons. The first half of the bowtie, termed the encoder, converts a visual stimulus into a highly 305 

compressed representation that is separated into distinct independent feature maps. The second 306 

half of the bowtie, termed the decoder, reverses the process, producing a visualization of the 307 

compressed representation. The VAE resembles the ventral visual system hierarchy – the 308 

encoder corresponds to the feedforward connections from primary visual cortex (V1) to the 309 

inferior temporal cortex (IT), while the decoder corresponds to feedback projections in the 310 

opposite direction. 311 

Any stimulus presented to the model will evoke a series of neural firing patterns in the 312 

encoder, where each layer is referred to as a latent representation. Note the skip connection, an 313 

additional component of the VAE, that links the first layer of the encoder to the last layer of the 314 

decoder, bypassing the feature maps. The skip connection allows the MLR to model differential 315 

effects of novel and familiar stimuli (Asp et al., 2021; Chung et al., 2023; Hedayati et al., 2022; 316 

Ngiam et al., 2018; Xie & Zhang, 2017).  317 

The Binding Pool (BP) (Swan & Wyble, 2014) is a separate neuron layer for the storage 318 

of memories. The BP can encode any combination of the latent spaces in the encoder of the VAE 319 

(the first half of the bowtie). Importantly, the connections between the encoder and the BP are 320 

bidirectional, allowing the encoded memories to be retrieved – the BP reconstructs (noisily) what 321 

it had encoded back into the VAE. The BP itself is connected bidirectionally to a set of tokens – 322 

each token is connected to a subset of BP neurons, with overlap possible in which neurons 323 

connect to each token. The token does not itself represent any featural information, but rather can 324 

be activated to reproduce the stored activity in the subset of BP that it is connected to. 325 
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Notionally, tokenization is the indexing of BP activity that pertains to an item following the 326 

feature-binding process. Multiple tokens allow for multiple items to be individuated, stored and 327 

retrieved, even if the items share spatial locations or feature values. These tokens may support 328 

higher-level cognitive operations – say, the chunking of items through associative learning or 329 

mental rotation of an object.  330 

It may be helpful to draw comparisons between the MLR model and the embedded 331 

process model of working memory (Cowan, 1999). The embedded process model views VWM 332 

as a hierarchy that comprises a long-term memory store, an activated subset of long-term 333 

memory (a short-term store), and a subset of the activated memory to be in conscious awareness 334 

(the focus of attention). The BP can be thought of like the focus of attention, in the sense that it 335 

holds the subset of VWM information that is actively selected (with that information becoming 336 

“in mind” once projected into the VAE). Then, the tokens are somewhat comparable to activated 337 

long-term memory – information held in highly accessible but latent states that can be quickly 338 

brought into the focus of attention – much like how the tokens can be reactivated in the BP (but 339 

remember that the tokens are not active representations of the information themselves). It could 340 

be theorized that these tokens link to content held in long-term memory (e.g. learned structural 341 

and semantic knowledge) that enable VWM resources to be freed up, and provide an interface by 342 

which information is eventually encoded into long-term memory (O’Reilly et al., 2022). This 343 

connection to long-term memory is not yet computationally implemented in the current version 344 

of the MLR model (but note that the MLR model can account for differential effects of novel and 345 

familiar stimuli as mentioned above). 346 

In sum, visual information is represented by the ‘perceptual brain’ (the VAE) where each 347 

layer of the encoder projects into the BP. The resulting pattern of activity gets indexed as tokens 348 
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to allow storage of multiple items. Any given token can be reactivated back into the BP, which 349 

projects back into the VAE and used to generate responses or translated through the decoder to 350 

generate a reconstruction of the original stimulus (akin to mental imagery). See Hedayati et al. 351 

(2022) for more information on the architecture of the MLR model, and a detailed 352 

implementation written in Python 3.7 using pytorch is hosted at https://osf.io/tpzqk/. 353 

Bringing slots and resources into accordance 354 

Earlier in this review, I provided a limited summary of slots and resources ideas in two 355 

subdomains (object-based versus feature-based models, and discrete-slots versus variable-356 

precision models) and suggested that the likely answer is that VWM is unlikely to be specifically 357 

one or the other in each of those subdomains. This VWM theory map (Figure 1) allows us to 358 

visualize how these ideas may interact in accordance, rather than place these classes of models in 359 

direct opposition. Further, it brings a new perspective to capacity limits in the VWM system – 360 

that bottlenecks of visual information can occur at various levels rather than being treated simply 361 

as a singular limit that can only exist on features or on objects. 362 

The core idea of object-based and discrete-slots models is that there exists a 363 

representation in working memory where the features of an object are bound and held in mind – 364 

this is akin to the tokens in the theory map. The tokens are grounded on the concepts of object 365 

files (Kahneman et al., 1992), fingers of instantiations (Pylyshyn, 1989) and most recently in the 366 

VWM subdomain as content-independent pointers (Balaban et al., 2019; Thyer et al., 2022) – 367 

specific feature values (e.g. color, orientation, location) produce activity in the binding pool that 368 

is assigned to a token. One important distinction that might need clear definition is identity 369 

content (feature values) from the pointers themselves. A current idea of interest is whether VWM 370 

pointers are spatiotemporal in nature (Thyer et al., 2022), whereby time and location are critical 371 
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and necessary components for the binding of features (Heuer & Rolfs, 2021; Schneegans et al., 372 

2023; Schneegans & Bays, 2017). However, these pointers may be defined in an object-based 373 

manner from Gestalt processes, and not only in terms of its context (binding to time and/or 374 

location) (Balaban et al., 2019; Balaban & Luria, 2016; T. Gao et al., 2011; Z. Gao et al., 2022). 375 

This token mechanism may correspond to observed neural correlates for object-based pointers 376 

(Thyer et al., 2022), and to the explicit conjunctive coding of object features that has been 377 

observed in the perirhinal cortex (Erez et al., 2016; Liang et al., 2020). These context-bound 378 

tokens are supposed to be critical for sustaining and updating an object-based representation, and 379 

a recent review suggests pointers as a plausible attention-based neural mechanism connecting 380 

representations of content to representations of structure in the human brain (O’Reilly et al., 381 

2022). Note that the MLR model does not have a set limit on the number of tokens, but object-382 

based models typically assert that there is (or perhaps can be) an item-based capacity limit, 383 

typically referred to as K (Cowan et al., 2005) – a maximum number of tokens that one can 384 

actively maintain in working memory (Adam et al., 2017; Ngiam et al., 2022). To be precise, 385 

VWM capacity may not be limited by the number of objects exactly, but by the number of 386 

objects that can be bound to its spatiotemporal context and actively maintained (see also Huang, 387 

2020 for a Boolean map account of VWM). 388 

A core tenet of resource models is that working memory representations vary in strength 389 

in a continuous manner. I have straightforwardly mapped this on to the binding pool nodes to 390 

encapsulate that facets of VWM like variable precision has been predominantly modeled as 391 

signal and noise in neural populations (Bays, 2014; Bays et al., 2022; Schneegans et al., 2020; 392 

Schneegans & Bays, 2017). Population coding accounts model the representation of VWM as an 393 

encoding-decoding process – a variable number of samples generated from a neural population 394 
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tuned for feature values is read-out to produce a signal that informs response behavior (Bays, 395 

2014; Schneegans et al., 2020). Note that there exists multiple ‘neuron’ layers in the MLR model 396 

that will contain various degrees of noise from which a signal may be drawn (see Hedayati et al. 397 

(2022) for how the different layers are differentially noisy for novel and familiar to-be-398 

remembered items). Another relevant facet of the theory map are the independent feature layers 399 

that project into the binding pool, in a correspondence to models proposing independent 400 

resources for separate features (Fougnie et al., 2010; Fougnie & Alvarez, 2011; Markov et al., 401 

2019; Shin & Ma, 2017). Feature-based phenomena, such as effects of stimulus complexity 402 

(Alvarez & Cavanagh, 2004; Hardman & Cowan, 2015; Olson & Jiang, 2002) or the independent 403 

loss of features (Fougnie & Alvarez, 2011), can be related to mechanisms involving these 404 

independent feature layers. 405 

The critical point then, as demonstrated by the VWM theory map, is that these two 406 

prominent classes of models and the ideas they represent are not necessarily mutually exclusive – 407 

object-based representations (in the form of tokens) can co-exist with noisy representations (in 408 

the form of neural populations). If this theory map is taken to be plausible, it is then a substantial 409 

challenge for VWM researchers to define an experimental design that would fully determine 410 

currently observed working memory phenomena or claim that representations take one form or 411 

the other. That is, a researcher is warned against basing their inferences on a dualistic framework 412 

(or at least claiming their results reflect a true nature of VWM broadly) without determining that 413 

it is indeed truly dualistic – it is not slots or resources, object-based or feature-based, discrete or 414 

variable-precision. 415 

Then why do we see papers with such “clear-cut evidence” in favor of one idea or the 416 

other? The theory map described above illustrates that the complex VWM system can embody 417 
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both ideas, which means that an experiment can be tailored to reveal the constraints imposed by 418 

one functional theory (e.g. a slots account or resources account). A set of empirical results may 419 

show capacity limits indeed being constrained by the number of objects as per a slots account in 420 

one paradigm but this does not deny that capacity limits can also be constrained at the feature-421 

level in other experimental conditions (and the vice versa). If researchers do not deny that the 422 

VWM system may flexibly adjust in various experimental conditions, each with potentially 423 

varying factors setting capacity limits, then researchers should not readily make the grand claim 424 

that their select theory truly characterizes VWM. Researchers should instead carefully identify 425 

and report the boundaries where their theory or model applies (Donkin et al., 2016). 426 

Further, key disagreements between current VWM researchers may be more specifically 427 

defined by using the above theory map, and then perhaps more meaningfully discussed and 428 

contested. Consider the current debate between proponents for an object-based item limit and 429 

resource-based accounts of VWM capacity on the existence of ‘true guesses’ (Adam et al., 2017; 430 

Bays et al., 2022; Ngiam et al., 2022; Schurgin et al., 2020) that was reviewed earlier. Here, ‘true 431 

guesses’ as defined by item-limit theorists may be best characterized as responses with no 432 

available token to inform the response, rather than defined as having ‘no working memory 433 

representation’ with which to inform behavior. This opens the possibility that activity may still 434 

be sustained in other layers of the VWM hierarchy from which a response may be produced – 435 

perhaps weights in the architecture that define an existing prior, or residual activity from 436 

previously encoded and represented information. As such, the burden of proof for evidencing an 437 

object-based limit on the VWM system should not rest on showing the existence of purely zero-438 

information states, nor does providing a continuous resource account that explains the gamut of 439 

low-precision or ‘guess responses’ refute the possibility of a discrete token-based representation 440 
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(Ngiam et al., 2022). Therein lies a substantial challenge to design reliable measures or 441 

experiments that undoubtedly capture how information is represented and processed in working 442 

memory. 443 

Comparing and contrasting leading models of VWM capacity limits 444 

To supplement the above overview of discrete-slots and variable-precision models, I will 445 

provide a brief summary of three other leading accounts of capacity limits in VWM – the neural 446 

population model (Bays, 2014; Schneegans & Bays, 2017), the target confusability competition 447 

(TCC) model (Schurgin et al., 2020) and the interference model (Oberauer & Lin, 2017). These 448 

formal models have a large degree of correspondence in the phenomena they try to capture, and 449 

as such I try to situate these models within the theory map in an attempt to clearly specify which 450 

phenomena they may or may not connect with. This may provide a means to better compare, 451 

contrast and benchmark these leading models – to clearly delineate where they compete, or 452 

where they may provide unifying accounts for VWM phenomena (Oberauer et al., 2018). Note 453 

that all these models appear to have varying architectures, but they can be placed and compared 454 

within the same space for formal comparisons (Oberauer, 2023). The present goal is not to 455 

directly comment on the model architectures as to which is more accurate but to situate these 456 

models in a way that better understand their relation so that we can better produce tests for them 457 

(Popov, 2023). 458 

The Neural Resource model 459 

The Neural Resource model (sometimes referred to as the Neural Population model), first 460 

published by Bays (2014) and extended by Schneegans and Bays (2017), is a population coding 461 

account, defining working memory in terms of the spiking activity in a population of neurons 462 
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tuned to encode stimulus features. The model applies an encoding-decoding process – during 463 

encoding, each neuron stochastically spikes based on its tuning (preference for the presented 464 

stimulus feature value) and the spiking activity from all neurons is then decoded to estimate the 465 

most likely stimulus feature. This process effectively captures the error distributions of single- 466 

and whole-report continuous VWM recall tasks (Bays, 2014; Schneegans et al., 2020; van den 467 

Berg et al., 2012), and is mathematically equivalent to the variable-precision model when a very 468 

large population of neurons is assumed (Schneegans et al., 2020).  469 

The Neural Resource model was recently updated to incorporate a temporal dimension, 470 

accounting for dynamics in the neural activity of sensory areas (iconic memory) that project into 471 

WM (the Dynamic Neural Resource model) (Tomić & Bays, 2023). The VWM neuron 472 

population accumulates activity from a sensory signal that rapidly decays following stimulus 473 

offset. With the decay of the sensory trace, the VWM population accumulates noisier signals, 474 

leading to diffusion of the represented value and the eventual output becoming noisy. With 475 

multiple to-be-remembered items, the Dynamic Neural Resource model assumes that when an 476 

item is cued for recall, any signal for non-target items is dropped, releasing resources for the 477 

signal of the target item to be scaled up. It is not yet agreed upon how (or even whether) 478 

reallocation of mnemonic resources occurs with retro-cueing or orienting of internal attention 479 

(Gunseli et al., 2015; Y. Lin & Fougnie, 2022; Myers et al., 2017; Souza & Oberauer, 2016). 480 

Tomić and Bays (2023) provide empirical validation that the Dynamic Neural Resource model 481 

can accurately model aggregate error distributions across memory arrays with various set sizes 482 

and stimulus durations.  483 

An important point is that the Neural Resource model, variable-precision model and 484 

slots+averaging model can be expressed within the unifying framework of stochastic sampling 485 
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(Schneegans et al., 2020). In this framework, VWM performance – the quality of the memory 486 

representations and its capacity limit – is determined by the total number of samples of the 487 

neuron populations, and their distribution among the to-be-remembered items. For example, 488 

consider a typical whole-report continuous recall task. In that task, an item might be represented 489 

more precisely in a given trial because there was a higher number of samples overall on that trial 490 

and/or because it captured more samples at the cost of other memory items. Thus, despite the 491 

underlying resource of samples being continuous in nature, the capacity limit can appear to be 492 

discrete because a subset of to-be-remembered items may typically capture a number of samples 493 

to reach an effective threshold of report. This appears to echo the stalemate between variable-494 

precision and discrete-slots models in explaining error distributions, shown in a factorial 495 

comparison of these VWM models (Adam et al., 2017; van den Berg et al., 2014). Again, this 496 

illustrates the challenge in distinguishing such models with current empirical evidence and 497 

methods and encourages the development of precise measures of phenomena. 498 

Here, I have localized the Neural Resource model to the binding pool, because like the 499 

MLR model, it models a pattern of activity being represented in a population of neurons specific 500 

to VWM. The new Dynamic Neural Resource model, by modeling the connection between 501 

iconic memory and VWM, can be likened to the connections between the VAE and the BP in the 502 

MLR. Of note, the Neural Resource model proposes feature binding occurs via spatial location 503 

(Schneegans & Bays, 2017) – given that neuron populations are likewise tuned to locations, the 504 

decoding process identifies the most likely target location to read out the associated feature 505 

values (e.g. a stimulus’ color and orientation) (see also recent work on the role of time in feature 506 

binding (Schneegans et al., 2023) and a Boolean map account of VWM for a different 507 

perspective on the role of spatial location (Huang, 2020)). As such, the Neural Resource model 508 
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does not invoke a token-based or item-based mechanism per se (as presented in the theory map), 509 

though it has parallels with the notion of spatiotemporal pointers that I outlined above when 510 

describing modern ‘slots’ accounts. This highlights a potential use case of the theory map – 511 

clarifying the proposed mechanisms involving space and time of each of the current VWM 512 

models, and specifying how they explain feature-binding or object-based effects (Fougnie et al., 513 

2012) and other extant VWM phenomena.  514 

The Target Confusability Competition model 515 

The recently developed target confusability competition (TCC) model (Schurgin et al., 516 

2020) proposes applying a signal detection framework unilaterally, but within a psychological 517 

similarity space rather than the stimulus defined space where VWM is typically modeled. It is 518 

well-known that the discriminability of the stimulus set impacts performance on standard VWM 519 

tasks. For example, change-detection accuracy is influenced by the similarity between the target 520 

and foil – changes are better detected when they are cross-category (e.g. shaded cube to a 521 

Chinese character) compared to when they are within-category (e.g. shaded cube to another 522 

shaded cube) (Awh et al., 2007). The TCC model formalizes the discriminability of the stimulus 523 

set by estimating the psychological similarity space using an empirical psychophysical measure, 524 

such as through a quad perceptual matching task (independent to the VWM task at hand). With 525 

the underlying discriminability of the stimulus set accounted for, VWM performance can then 526 

perhaps be more exactly compared across various stimulus sets and task conditions. 527 

Consider the continuous report task that is often employed to probe VWM (Ma et al., 528 

2014; W. Zhang & Luck, 2008). In this paradigm, subjects are briefly presented with an array of 529 

items (e.g., a set of colors) from a continuous stimulus space (e.g., a color wheel). Subjects are 530 

cued to recall a single item, and respond by precisely clicking within an annulus (i.e., selecting a 531 
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color on the color wheel). Responses are typically modeled on the circular space itself – VWM 532 

precision is operationalized as the standard deviation in circular degrees from the target value. 533 

However, this assumes that the degree of error is uniform between all values in the stimulus set. 534 

Now, consider the effect of categories (e.g. color categories like ‘red’ or ‘green’) that has been 535 

shown to impact performance on a VWM continuous report task (Hardman et al., 2017; Pratte et 536 

al., 2017; Ricker et al., 2023; Souza et al., 2021). By definition, categories define stimulus values 537 

that are similar (within-category) and those that are dissimilar (out-of-category). So, when 538 

subjects are required to recall a red target, they are more likely to err with a shade of color in the 539 

‘red’ category because they are similar and confusable, but not likely to err with a shade of color 540 

in the ‘green’ category because it is easily discerned as different. The TCC model explicitly 541 

accounts for the non-uniformity of any kinds of effects that influence the psychological 542 

similarity of the stimulus values, and by doing so, it can then better predict the error distributions 543 

on standard continuous report tasks (Schurgin et al., 2020; Williams et al., 2022). A helpful 544 

interactive primer for the TCC model can be found at https://bradylab.ucsd.edu/tcc/. 545 

With the TCC model, the authors propose that visual working memories only differ 546 

according to their strength (the d’ parameter), doing away with separate concepts for number and 547 

precision (Schurgin et al., 2020). In my opinion, it is important to still theorize about fluctuations 548 

to the underlying psychological similarity space that may occur with shifts in attention or 549 

learning and experience (for e.g., changes in perceptual fluency with statistical learning (Perfors 550 

& Kidd, 2022)). Further, the TCC model, like the variable-precision and Neural Population 551 

models, denies the existence of a guessing state (and assuming memories can be defined in terms 552 

of being remembered or not) – all to-be-remembered items are encoded with some variation in 553 

memory strength producing a familiarity signal. However, the nascent TCC model does not yet 554 
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formally define how the memory strengths may vary across items within an array, though it is 555 

capable of representing that variability. In my view, this is where the TCC model and an object-556 

based pointer model can perhaps be compatible –a signal-detection account can accurately 557 

account for the precision of recall at the individual item level, but the distribution of resources 558 

across the items may be best modeled with an object-based capacity limit and variation in 559 

achieving that maximal capacity (Hakim et al., 2020; Ngiam et al., 2022, 2023). 560 

Mapping the TCC model to the theory map is not straightforward because the origin of 561 

the psychological similarity function is left undefined, though it is measured by an independent 562 

psychophysical task. Of note, the TCC model and the Neural Resource model (Bays, 2014) 563 

appear to have largely different accounts for VWM performance, the models share a large 564 

correspondence in architecture – both define a distributed pattern of activity produced by a 565 

preference to a feature value, that is corrupted by noise and subsequently decoded to output a 566 

feature value (Bays, 2019; Tomić & Bays, 2022). Recent work points to this large similarity in 567 

model architecture as a possible reason for why the TCC model can produce accurate fits (see 568 

Figure 2) – Tomić & Bays (2022) failed to find correlations between psychophysical perceptual 569 

similarity measures and VWM error distributions in four separate stimulus dimensions, despite it 570 

being a core rationale of the TCC model. Here, I have placed the TCC model alongside the 571 

Neural Resource model, connecting it to the binding pool of the theory map, to highlight their 572 

similarity in model architecture but their very different explanations of phenomena. It is perhaps 573 

disagreeable to do so, because that is at odds with a signal detection framework whereby a 574 

familiarity signal is computed across a distributed population of neurons (Bays, 2019). 575 

Nevertheless, mapping them together within the theory map emphasizes the need for careful 576 
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theory-driven experimental design to separate and definitively test the TCC model and the 577 

Neural Resource models – or perhaps to integrate their ideas (Figure 2). 578 

 579 
Figure 2. Using the theory map to compare the Neural Resource (NR) model (Bays, 2014) and 580 
the Target Confusability Competition (TCC) model (Schurgin et al., 2020). The computational 581 
implementation of both models are mapped on to different components of the theory map, 582 
showing their large degree of correspondence (see Figure 1 in Tomić & Bays, 2022). This 583 
theoretical backdrop may enable an incisive design that contrasts these two models. 584 

The Interference Model 585 

The Interference Model (Oberauer & Lin, 2017) proposes the VWM capacity limit (the 586 

decline in precision of recall with increasing memory load) is a result of interference between the 587 

representations in working memory. According to this model, encoding into working memory 588 

occurs when an item’s content (e.g. the feature value of the item) is temporarily bound to its 589 

context (e.g. the location of the item within an array). During retrieval, there are three sources of 590 

activation – context-based activation (the retrieval of content information is activated according 591 

to the amount it is bound to the context cue), context-independent activation (persistent 592 

activation from maintaining the items on each trial) and uniform background noise across all 593 
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response candidates. The probability of retrieval is based on the relative activation of each target 594 

item. It is also assumed that the focus of attention holds only one item, and as the context 595 

representations are limited in precision, items in nearby contexts (e.g. spatially neighboring 596 

items) will be activated and compete with the target item to be held in the focus of attention. 597 

With increasing set size of the memory array, more items are likely to be in the nearby context, 598 

thereby increasing interference and giving rise to capacity limits (Figure 3).  599 

Oberauer and Lin (2017) demonstrated the useful distinction of context and content in 600 

their original paper introducing the Interference Model. Firstly, the Interference Model 601 

accurately predicts similarity in content (e.g. target and non-target are similar in color) produces 602 

a benefit to recall performance. This phenomena is commonly attributed to perceptual grouping 603 

or ensemble representation (Brady et al., 2011; Brady & Tenenbaum, 2013; see also Chunharas 604 

& Brady, 2023). In the Interference Model framework, when a target and non-target share 605 

similar feature values, their summed activation produces a peak close to the target feature value. 606 

When target and non-target are dissimilar, their summed activation distorts away from the target 607 

feature value (i.e. non-target intrusions have some likelihood). Secondly, the Interference Model 608 

predicts similarity in the context of target and non-targets (e.g. target and non-target share similar 609 

spatial locations, when cued by a location probe) produces a cost to recall performance. The 610 

Interference Model accurately predicts that non-target confusions are more likely to occur with 611 

greater similarity in the cue dimension. In brief, the Interference Model captures that similarity 612 

has differential effects in the content and context dimensions.  613 

Given its architecture rests somewhat on context and content dimensions, it felt 614 

appropriate to map the Interference Model to the encoding and retrieval operations between the 615 

binding pool and tokens. To flesh out the analogy, tokens may reflect the result of binding visual 616 
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information to a spatial location in time (context-binding), and that interference arises from the 617 

competition of retrieval from tokens to the limited workspace (here, the binding pool) – but note 618 

that the architecture of the Interference Model does not invoke a token mechanism (Figure 3). As 619 

such, the Interference Model is compatible with an additional discrete capacity limit and the 620 

possibility of guessing states (Oberauer & Lin, 2017). The Interference Model was recently 621 

applied to capture performance on change-detection tasks, outperforming the variable precision 622 

model, slots-plus-averaging model and Neural Resource model in predicting change-detection 623 

performance – specifically in estimating the set-size effect and intrusions from non-target item 624 

probes (H.-Y. Lin & Oberauer, 2022).  The Interference Model also satisfies benchmarks across 625 

both visual and verbal working memory domains (Oberauer & Lin, 2023) and may provide a 626 

unifying account between the two. 627 

It is interesting to consider how interference (in the broader sense) may vary as a function 628 

of psychological similarity (say, subjective distinctiveness) and/or perceptual similarity (say, 629 

objective distinctiveness). Stimuli that observers have learned to discriminate might be predicted 630 

to produce smaller inter-item interference effects in both content and context dimensions. That is, 631 

an observer that has learned to make fine discriminations between shades of colors might be less 632 

susceptible to interference both when color is the retrieval cue (the context) or when color is the 633 

to-be-retrieved feature (the content) (but see McMaster et al. (2022) where cue-feature variability 634 

accounts for the prevalence of swap errors). Curiously, observers that were trained to identify 635 

letters of foreign alphabets as proficiently as fluent readers showed no improvement to memory 636 

span for those trained letters (Pelli et al., 2006), but encoding rate and capacity is distinctly 637 

increased for letters from familiar alphabets compared to unfamiliar alphabets, even when 638 

matched on stimulus complexity (Ngiam et al., 2018). That is to suggest that interference could 639 
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be a confluence of the physical similarity of the stimulus and/or the individual’s familiarity or 640 

experience with the stimuli. The theory map serves a helpful reminder that various factors, like 641 

perceptual and psychological similarity, may shape encoding of the VWM representation (say, 642 

acting on the various layers of the VAE), as well as also variably act on retrieval (say, which 643 

token is tapped to be retrieved into the binding pool) before the eventual output of a response on 644 

a VWM task. 645 

 646 
 647 

Figure 3. Using the theory map to visualize the Interference Model (Oberauer & Lin, 2017). A 648 
probe cues a specific context, prompting activation of a token (the blue token on the left). Tokens 649 
similar in context (the purple token in the middle moreso than the green token on the right) 650 
produces interference. This shapes the activity in the binding pool and what feature value is 651 
ultimately reported. Note that the Interference Model does not appeal to this token-based 652 
mechanism in its computation.  653 
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Using the theory map to discuss and develop visual working memory theory 654 

and phenomena 655 

I hope that in trying to map the various current models above, I have demonstrated there 656 

are potential compatibilities between the models in explaining extant VWM phenomena. I hope 657 

to have also guided readers to the specific areas where the models may fundamentally disagree – 658 

good starting points to design more incisive experimental studies. The theory map provides a 659 

framework that visual working memory researchers can align discussions about various 660 

phenomena or models – through revealing hidden intuitions or clarifying imprecisions in verbal 661 

descriptions. Having a common framework may lead to more fruitful discussions about the 662 

mechanisms and models for visual working memory phenomena, preventing misunderstandings 663 

caused by having differing definitions (Cowan, 2017) or different measures and analysis 664 

methods (Logie et al., 2021).  665 

A practical guide to theory development is the Theory Construction Methodology (TCM) 666 

(Borsboom et al., 2021). It aims to connect theory to phenomena to data in 5 steps – identify 667 

empirical phenomena, develop prototheory, formalize theory and phenomena, check explanatory 668 

adequacy, and evaluate theory. I believe the theory map will be useful for at least the first two 669 

steps – the theory map encourages clearly defining which empirical phenomena one hopes to 670 

explain at the outset, before generating a new prototheory or applying existing models. Oberauer 671 

et al. (2018) has provided a detailed list of relevant empirical phenomena that a theory of 672 

working memory should explain and be benchmarked on. The hope is that this theory map will 673 

encourage researchers to avoid taking a dualistic approach to defining theories and testing them 674 

(theory A versus theory B), and to carefully situate how their empirical studies or data may relate 675 

to and shape existing theories. Following the TCM should also promote careful consideration of 676 



VISUAL WORKING MEMORY THEORY MAP 34 

what empirical data would be definitive evidence supporting or undermining the different 677 

existing models. 678 

To demonstrate how the theory map can be a useful device in discussion about VWM 679 

concepts, let us consider how the creation of the VWM representation may be achieved (refer 680 

back to Figure 1). From the beginning, initial encoding into VWM can be influenced by 681 

numerous factors like top-down attentional modulation (Gazzaley & Nobre, 2012; Teng et al., 682 

2022; Teng & Kravitz, 2019) or learned knowledge (Asp et al., 2021; Brady et al., 2016; 683 

Hedayati et al., 2022; Ngiam et al., 2018, 2019; Xie & Zhang, 2017) – I point to the skip 684 

connection as the place where these effects occur, like in the MLR model. However, these 685 

factors that influence the initial apprehension of information may not exactly define the 686 

tokenization or creation of pointers – the binding of featural information to the spatiotemporal 687 

context – in the same way. Hence, the theory map readily differentiates between these two levels 688 

as early-stage and late-stage feature-binding, with the latter as critical for gating into VWM. 689 

Thus, when describing or discussing the potentially obscure concepts of encoding or 690 

representation in VWM, relevant phenomena or mechanisms can be situated on the theory map 691 

to pinpoint what exactly is being considered. 692 

The theory map can be a helpful starting point for the description of VWM phenomena in 693 

terms of specific mechanisms. As an example, take the retro-cue effect – a key focus of current 694 

research of VWM that has not yet been discussed in this review so far. The retro-cue effect is the 695 

enhanced memory for an item following a retroactive cue to the spatial location of that item 696 

(Griffin & Nobre, 2003; Landman et al., 2003). It has been a fruitful empirical effect to explore 697 

the workings of internal attention (see reviews by Myers et al., 2017; Souza & Oberauer, 2016). 698 

Many potential explanations have been offered for the retro-cue effect – protection from time-699 
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based decay, prioritization for comparison, removal of non-cued information, attentional 700 

strengthening or refreshing, retrieval head start, and protection from perceptual interference as 701 

categorized by Souza and Oberauer (2016). Here, the theory map may help researchers detail the 702 

specific mechanisms with each of these potential explanations, and thereby perform more 703 

definitive empirical tests or provide better formal models. For example, one could define the 704 

removal of non-cued information mechanistically as the complete loss of the token indexing that 705 

content, preventing its retrieval into the focus of attention – similar to distraction (Z. Zhang & 706 

Lewis-Peacock, 2023). However, this may not always occur – in other empirical conditions, the 707 

non-cued items may instead be held in latent states (not presently represented in the binding pool 708 

or focus of attention) but still indexed as tokens, and thus, can be retrieved but perhaps with 709 

some cost – similar to distortion (Fukuda et al., 2022). Of note, the theory map reminds the 710 

researcher that the focus of attention is one component of the entire VWM system – one that is 711 

an interface for many possible VWM phenomena. Thus, it is an important consideration in 712 

defining potential boundary conditions for when different retro-cue effects might occur.  713 

It is expected that there will be disagreement with various aspects of the theory map as I 714 

have presented it here – perhaps with the connection of specific mechanisms to VWM 715 

phenomena that I have laid out in this review, or with the possible agreement of existing models 716 

that I have implied with the map. I believe these are seeds for impactful discussions that will 717 

inform empirical research that more incisively tests existing theories. I hope the map provides a 718 

common starting point for discussions across our field, getting researchers who focus on 719 

disparate but related phenomena, or use entirely different methods and approaches, on the same 720 

page. This may be a catalyst for our field to take a model-oriented approach to empirical research 721 

that is grounded in theory, clearly specifying the connection between phenomena and the 722 
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mechanisms of tested models (Borsboom et al., 2021; Devezer & Buzbas, 2023; Oberauer & 723 

Lewandowsky, 2019). From these discussions, one could imagine that the VWM field identifies 724 

that it is not yet ready to conduct certain empirical tests – that innovation of measures and 725 

methods, or formalization or computational implementation of models are needed – perhaps 726 

spurring collaboration across labs on common goals. In this way, perhaps the field can progress 727 

on the challenge to shape and determine a complete model of VWM (Popov, 2023). 728 

I would like to encourage researchers to practice counterinduction – we should seek to 729 

strengthen all competing models, rather than promoting a pet theory or model (Feyerabend, 730 

2020). We should avoid the toothbrush problem (coined by Watkins, 1984): “Psychologists treat 731 

other people’s theories like toothbrushes – no self-respecting person wants to use anyone else’s.” 732 

(Mischel, 2008). One way that this may be achieved is through so-called adversarial 733 

collaborations, where researchers with differing theoretical views commit to collaborating on an 734 

empirical test (Cowan et al., 2020). This sort of collaboration is supposed to foster an 735 

understanding of opposing viewpoints, and give rise to a new theoretical position that unifies 736 

these views. Whatever the form of coordinated discussion on VWM, my theory map here may be 737 

a useful device to recognize where viewpoints specifically differ, and/or potential ways they may 738 

be in accordance, like I have demonstrated in this review with discrete-slots and variable 739 

precision models, and object-based and feature-based accounts. Our field would do well to 740 

readily develop and apply the best versions of various existing models, in the hopes of a truly 741 

consequential test of theories. 742 

Conclusion 743 

The aim of this review was to encourage development of a theoretical framework on 744 

which to ground research of visual working memory. I created a theory map using the broadly 745 



VISUAL WORKING MEMORY THEORY MAP 37 

encompassing MLR model (Hedayati et al., 2022) as a scaffold to describe and compare current 746 

VWM phenomena and models. The hope is for the wider field to use the map as a helpful device 747 

to situate and promote further development of theories and models of VWM. By providing the 748 

map as a starting common point, more fruitful discussions and definitive experiment designs are 749 

enabled. I believe the map will help clarify the necessarily imprecise verbal definitions, reveal 750 

hidden intuitions, enable more specific descriptions of current models of VWM and the 751 

mechanisms through which they connect to empirical phenomena. Differences in intuitions or 752 

models about VWM phenomena may then be more specifically identified, and this may lead to 753 

more definitive studies from which we can more accurately determine the workings of the VWM 754 

system.  755 

  756 
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