Enhancing visual working memory performance using statistical regularities requires explicit awareness

W. X. Q. Ngiam, J. Brissenden and E. Awh

Australasian Experimental Psychology Conference 2017

What is visual working memory?

- The system responsible for actively storing visual information essential for cognitive tasks
 - Reading this sentence requires a store for the letters and words
 - Tracking multiple objects in the visual scene
 - Predicting the motion of objects

Visual working memory capacity

- The amount of information this active store can retain is limited!
 - On average, 3-4 objects worth of information
- It is different between individuals
 - Gradually increases during adolescence into adulthood
- A reliable predictor of cognitive performance
 - High correlations with fluid intelligence, academic performance and control of attention

Visual working memory capacity

- The amount of information this active store can retain is limited!
 - On average, 3-4 objects worth of information
- It is different between individuals
 - Gradually increases during adolescence into adulthood
- A reliable predictor of cognitive performance
 - High correlations with fluid intelligence, academic performance and control of attention

Measuring VWM capacity

• Using a change-detection task

Can visual working memory capacity be increased?

- How does experience and learning influence visual working memory processes?
- Can we augment the visual working memory system with training?
- Do capacity increases lead to changes in cognition?

Mixed results in the literature...

Psychological Research DOI 10.1007/s00426-015-0648-y

ORIGINAL ARTICLE

Working memory training improves visual short-term memory capacity

Hillary Schwarb · Jayde Nail · Eric H. Schumacher

Memory & Cognition 2004, 32 (8), 1326-1332

Visual short-term memory is not improved by training

INGRID R. OLSON University of Pennsylvania, Philadelphia, Pennsylvania

and

YUHONG JIANG Harvard University, Cambridge, Massachusetts

Training Improves the Capacity of Visual Working Memory When It Is Adaptive, Individualized, and Targeted

Eunsam Shin, Hunjae Lee, Sang-Ah Yoo, Sang Chul Chong 🔤

Brady, Konkle, & Alvarez (2009)

Journal of Experimental Psychology: General 2009, Vol. 138, No. 4, 487–502

© 2009 American Psychological Association 0096-3445/09/\$12.00 DOI: 10.1037/a0016797

Compression in Visual Working Memory: Using Statistical Regularities to Form More Efficient Memory Representations

Timothy F. Brady and Talia Konkle Massachusetts Institute of Technology George A. Alvarez Harvard University

Brady, Konkle, & Alvarez (2009)

Þ

1000 ms → 1000 ms → Until Response

- 10 blocks of 60 trials
 - Two conditions:
 - Patterned Four pairs with highprobability (p = .2151) and all others with low-probability (p = .0027).
 - Approximately 80% of the pairs shown were the high-probability pairs
 - The regularities were removed from the displays in the last block
 - Uniform All pairs with equal probability
 - Between-subjects, *n* = 20

Brady, Konkle, & Alvarez (2009)

- Recall performance improves in the *patterned* condition but not in the *uniform* condition
 - Observers benefit from the statistical regularity in the displays
 - A product of visual statistical learning

Visual Statistical Learning

- The ability for observers to learn subtle statistical relationships automatically **without awareness** of those regularities
 - Thought to involve unconscious statistical computations, forming the required associations between elements for the efficient **chunking** of information
 - An automatic underlying perceptual process, rather than a higher-level intentional learning strategy
 - Thought to proceed "automatically", "incidentally", "spontaneou! The Automaticity of Visual Statistical Learning of mere exposure"

How does this increase occur in VWM?

But is there an alternative?

Experiment 1

- No explicit instruction about pairs or statistical regularities
- Blocked design All subjects (n = 32) completed 10 blocks in the patterned condition and 10 blocks in the uniform condition
- Tested on awareness at the end

Did people get better with statistical regularities?

Significant effect of condition, block and interaction between condition and block

Did participants become aware of the statistical regularities?

Which colour was most likely to appear with this colour shown?

• Aware = Correctly identified **all** the colors paired in the highprobability pair with each of the **eight** colors.

		Patterned First	Uniform First	Total
	Aware	14	5	19
	Unaware	2	11	13
	Total	16	16	32

Did awareness of the statistical regularities help?

- Analysis with awareness as a factor
 - Main effect of awareness p < .001
 - Significant three-way interaction p < .05
- Among aware participants only, significant interaction between block and condition -p = .001
- Among unaware participants only, interaction between blocks and condition was not significant – p = .35

p	Condition	Block	Two-way Interaction
Aware	< .001	< .001	< .001
Unaware	n.s	n.s	n.s

What effect did awareness have?

Experiment 2

- It seems clear that explicit awareness seems to produce this "memory compression" effect...
- But we did have a primacy effect Participants who completed the patterned blocks first were more likely to be aware.
- Alternating conditions
 - Patterned block followed by a uniform block or vice versa

Did we replicate observers improving with statistical regularities?

- Main effect of condition, no effect of block but significant interaction
- No primacy effects this time

Did we replicate the effect of awareness?

- 7 of the 16 observers were 'aware'
- Three-way ANOVA (awareness, block, condition)
 - Main effect of awareness p < .01
 - Significant three-way interaction
 p < .05

p	Condition	Block	Two-way Interaction
Aware	< .001	< .001	< .001
Unaware	< .02	n.s	n.s

Conclusions

- Memory compression requires explicit awareness of statistical regularities
 - This suggests that the memory compression effect is not produced by implicit visual statistical learning
- Observers may use chunks held in LTM to improve recall performance
 - VWM does not need to be augmented to hold chunks of feature values
 - Using objects stored in VWM as pointers, they can retrieve the chunk and recall more items in the display

Thank you

Edward Awh

Edward Vogel

Alex Holcombe

Patrick Goodbourn

