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Abstract 

Visual working memory (VWM) is limited in both the capacity of information it can 

retain and the rate at which it encodes that information. We examined the influence of 

stimulus complexity on these two limitations of VWM. Observers performed a 

change-detection task with English letters presented in different fonts, or letters from 

different unfamiliar alphabets. Average perimetric complexity (κ)—an objective 

correlate of the number of features comprising each letter—differed between 

alphabets. Varying the time between the memory array and mask, we used change-

detection performance to estimate the number of items held in VWM (K) as a function 

of encoding time. For all alphabets, K increased over 270ms (indicating the rate of 

encoding) before reaching an asymptote (indicating capacity). We found that rate and 

capacity for each alphabet were unrelated to complexity: Performance was best 

modelled by assuming that both were limited in terms of number of items (K), rather 

than number of features (K × κ). We also found a higher encoding rate and capacity 

for familiar alphabets (~45 items sec−1; ~4 items) than for unfamiliar alphabets (~12 

items sec−1; ~1.5 items). We then compared change-detection performance between 

English letters and an unfamiliar artificial character set matched in complexity. Again, 

performance was better for the familiar English letters than the unfamiliar characters. 

We conclude that rate and capacity are determined primarily by familiarity with 

memoranda. This suggests that binding of letter features is sufficiently rapid to allow 

encoding of alphabetic stimuli as feature-integrated objects in VWM. 

Word Count: 248 

Keywords: visual working memory, memory capacity, encoding rate, stimulus 

complexity, stimulus familiarity.  
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Introduction 

Encoding, storing and manipulating information in visual working memory 

(VWM) is critical for perception and cognition. For example, we use VWM to 

integrate information across saccadic eye movements (Irwin & Andrews, 1996); to 

retain information about objects during search and tracking (Luck & Vogel, 2013); 

and to guide the deployment of attention (Awh & Jonides, 2001). It is also postulated 

to play a role in higher cognitive functions, as suggested by strong correlations 

between performance on working-memory tasks and measures of cognitive ability 

(Cowan et al., 2005; Fukuda, Vogel, Mayr, & Awh, 2010). 

Models of VWM architecture 

VWM is surprisingly limited in capacity: Typically, only 3 or 4 items can be 

stored at once. Conflicting findings regarding the influence of stimulus complexity on 

this capacity limit have inspired different models of VWM architecture. Some have 

proposed a limit defined strictly by the number of items to be memorised. For 

example, Luck and Vogel reported that VWM performance was invariant when 

memoranda were conjunctions of various features, such as colour, orientation, size 

and the presence or absence of a gap (Luck & Vogel, 1997; Vogel, Woodman, & 

Luck, 2001). As the requirement to encode additional features did not influence 

change-detection performance, they concluded that each object is stored in a VWM 

‘slot’ with its features already integrated. In contrast, Alvarez and Cavanagh (2004) 

reported different VWM capacities for stimulus sets differing in complexity. They 

defined the complexity of a set as its visual-search rate, the additional time taken to 

find a target with each additional object in a visual-search array. Visual-search rate 

was strongly (indeed, almost perfectly) correlated with the inverse of VWM capacity 
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for each stimulus set: That is, VWM capacity was lower for more complex objects. 

Such findings suggest a resource model of VWM whereby storage of more complex 

objects requires more of some limited resource. Visual-search rates are better 

predictors of VWM capacity for short stimulus presentations than for longer ones 

(Eng, Chen, & Jiang, 2005), suggesting that stimulus complexity might impact VWM 

capacity by limiting the rate of perceptual encoding. 

Awh, Barton and Vogel (2007) contend that the apparent differences in 

VWM capacity observed by Alvarez and Cavanagh (2004) were due not to stimulus 

complexity per se, but rather to an increase in confusion errors when memory and test 

objects were more visually similar (high sample–test similarity). They compared 

change-detection accuracy when the change was ‘within-category’, such as from a 

shaded cube to another, to when the change was ‘cross-category’, such as from a 

shaded cube to a Chinese character. Change-detection accuracy with within-category 

changes decreased as complexity increased, but change-detection accuracy with cross-

category changes was equivalent to change-detection accuracy with low complexity 

items (simple colours). By their account, the effect of complexity on change-detection 

performance comes when memory and test objects must be compared, rather than 

during encoding. Note that these findings do not directly contradict Alvarez and 

Cavanagh’s basic claim that change-detection performance is influenced by the 

complexity of stimuli. A more complex object may be represented in VWM with 

fewer intact features, or at a lower resolution. A degraded representation of a Chinese 

character might be easily distinguishable from a coloured square, but may not be 

distinguishable from another character with similar features. 

In addition to being limited in capacity, VWM also appears to be limited in 

the rate at which representations can be encoded. Vogel, Woodman and Luck (2006) 
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quantified the rate of encoding objects into VWM by manipulating the delay or 

stimulus onset asynchrony (SOA) between the presentation of the memory array and a 

backward-mask array in a change-detection task. Vogel et al. (2006) found 

performance on the change-detection task improved steadily for SOAs up to 200 ms, 

before reaching an asymptote. Prior to the asymptote, each colour block took 

approximately 50 ms to encode; beyond the asymptote, capacity was approximately 

2.5 blocks. 

Considering encoding rate also addresses a potential confound in standard 

approaches to measuring VWM capacity. Typically, the same temporal relationship 

between memory, mask and test arrays is maintained throughout an experiment. If the 

time available to encode objects is too brief, the capacity of VWM might be 

underestimated. Furthermore, if encoding rate varies with the complexity of the 

memoranda, sets of more complex objects will require more time to saturate VWM 

capacity. If this were the case, apparent differences in VWM capacity for objects of 

different complexity—such as those reported by Alvarez and Cavanagh (2004)—

might be an artefact of interrupting encoding before more complex objects have had 

sufficient time to fill VWM. As Vogel et al. (2006) used a single stimulus set, it is 

unknown whether the rate of encoding into VWM changes with stimulus complexity. 

An object with more features may take longer to encode, as suggested by Eng et al. 

(2005); alternatively, consolidation into VWM may be independent of the object’s 

complexity. 

Complexity and familiarity 

The definition of complexity has been inconsistent in the VWM literature, 

and differing definitions may have led to conflicting findings. Luck and Vogel (1997) 
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manipulated complexity by conjoining visual features across different dimensions 

(e.g. colour and orientation). Varying complexity by adding features in different 

dimensions will have no effect if VWM comprises independent stores for different 

feature dimensions. Alvarez and Cavanagh (2004) estimated object complexity using 

a visual-search task; yet, a correlation between visual-search performance and VWM 

capacity should be expected because visual search relies on VWM processes. Emrich, 

Al-Aidroos, Pratt and Ferber (2010) reported that visual-search rate decreased when a 

memory load that exhausted VWM capacity was placed on observers, but not when 

the load was below VWM capacity. They suggest that VWM inhibits returning to 

previously searched items, but this is limited by the number of items that can be held 

in VWM capacity (see Le-Hoa Võ & Wolfe, 2015). Visual-search rates thus may not 

index stimulus complexity per se but rather a range of factors that influence both 

change-detection and visual search performance, such as item similarity and 

familiarity. 

Although objective measures of visual complexity exist, to our knowledge 

they have not been applied to the study of VWM. For example, perimetric complexity 

is defined as the square of the combined inside and outside perimeters of a letter, 

divided by its area (Attneave & Arnoult, 1956). Letter identification efficiency stands 

in a nearly perfect negative linear relationship with perimetric complexity, suggesting 

that letter identification is mediated by detectors of simple features: As letters increase 

in complexity, they are identified increasingly inefficiently because more features 

must be combined together (Pelli, Burns, Farell, & Moore-Page, 2006). An object’s 

perimetric complexity thus provides a useful proxy for the number of features it 

contains. Importantly, this allows complexity to vary without the addition of extra 

feature dimensions such as colour. 
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Familiarity has also been shown to influence consolidation and storage in 

VWM. For example, higher VWM capacities have been found for famous faces over 

unfamiliar faces (Jackson & Raymond, 2008) and for Pokémon (cartoon characters) 

from the original generation over the recent generation among participants who 

reported familiarity with the original generation (Xie & Zhang, 2016). Additionally, 

the encoding rate for Pokémon was faster for people familiar with them compared to 

those who were not (Xie & Zhang, 2017). However, as these studies do not control for 

or measure stimulus complexity, the degree to which these effects of familiarity are 

independent of stimulus complexity is unknown. 

The present study 

In the present study, we examined the influence of stimulus complexity and 

familiarity on the capacity and encoding rate of VWM. We used a variant of Vogel et 

al.’s (2006) change-detection paradigm, whereby the number of items held in VWM 

was measured as a function of the amount of time allowed for stimulus encoding. In 

Experiment 1, we used letters of the English alphabet, and varied complexity by 

presenting the letters in four different fonts. To anticipate out results, we did not find 

an influence of stimulus complexity, but what appeared to be an effect of familiarity. 

In Experiment 2, we used characters from four alphabets that were equally unfamiliar 

to our participants, to isolate any possible effect of stimulus complexity independent 

of familiarity. In Experiment 3, we compared English characters with the Brussels 

Artificial Character Set (BACS), which is designed to have the same featural 

information, such as the number of junctions, strokes and terminations as English 

characters (Vidal, Content, & Chetail, 2017). This allowed us to examine whether 

familiarity with English letters led to any differences in VWM performance compared 

to the unfamiliar but similarly complex BACS letters.	
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We considered four general models of VWM architecture. Both encoding 

and capacity limits in VWM might best be described in terms of objects, or in terms 

of features. If feature integration is a limiting factor in the process of consolidation 

into VWM, letters from a more complex alphabet (which contain more features) will 

be encoded at a slower rate. Alternatively, feature integration may not limit VWM 

consolidation; in this case, encoding rate for items will not vary with stimulus 

complexity. Likewise, if the number of features that can be stored limits VWM 

capacity, fewer items will be stored from more complex alphabets. Alternatively, the 

number of features may not limit VWM capacity; in this case, the number of items 

that can be stored will not vary with stimulus complexity.  

Figure 1 shows predictions from the four ensuing models of VWM encoding 

and storage. Each panel shows the number of objects stored in VWM (K) as a 

function of encoding time—that is, the stimulus onset asynchrony (SOA) between the 

memory array and the mask array. The initial gradient of each function is determined 

by encoding rate, and the asymptote reflects VWM capacity (Vogel et al., 2006). 

Luck and Vogel (1997) found that VWM capacity did not vary with the complexity of 

stimuli. This is consistent with the assumption that VWM storage comprises a fixed 

number of feature-integrated object files, such that its capacity is independent of item 

complexity. Of our four models, this is consistent with both IrIc (rate in items, 

capacity in items; Figure 1a) and FrIc (rate in features, capacity in items; Figure 1c), 

which have an identical asymptote for each alphabet. In contrast, Alvarez and 

Cavanagh (2004) found that VWM capacity varied with item complexity, such that 

fewer items can be stored with increasing object complexity. Of our four models, this 

is consistent with both IrFc (rate in items, capacity in features; Figure 1b) and FrFc 

(rate in features, capacity in features; Figure 1d), with a different asymptote for each 
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alphabet that is predicted by item complexity. The Fr models (rate in features) 

predicts varying encoding rates according to the perimetric complexity of the 

alphabet, whereas Ir models (rate in items) predict perimetric complexity has no 

influence on encoding rates of an alphabet. 

General Methods 

Apparatus 

Stimuli were generated using MATLAB (The MathWorks, Natick, MA) and 

PsychToolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). They were shown 

on a Trinitron G520 CRT monitor (Sony Corporation, Tokyo, Japan) on a uniform 

grey background of luminance 51 cd m−2. The spatial resolution of the monitor was 

1024 × 768 pixels, and the refresh rate was 100 Hz. The monitor was gamma-

corrected independently for each of the red, green and blue phosphors; we measured 

gamma functions using a Spyder4ELITE photosensor (Datacolor, Lawrenceville, NJ) 

and applied corrections using the PsychToolbox imaging pipeline. Participants were 

seated in a dark room, with a chin rest to maintain a viewing distance of 57 cm from 

the monitor. 

Stimuli 

Each letter was drawn in black, within a white circular aperture. An aperture 

subtended 1.8°, and a letter subtended a maximum of 1.5° on vertical and horizontal 

axes. Each aperture was positioned on the circumference of an imaginary circle such 

that each was centred 4.0° from the fixation point. Apertures were equally spaced 

around the circle, with a random rotation applied to the circle of apertures on each 

trial.  
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Procedure 

The general procedure for each trial is shown in Figure 2. A warning tone 

sounded at the beginning of each trial. At the same time, a fixation point appeared 

with two randomly selected digits (1–9) on either side (centred 3.2° to the left and 

right). Participants were instructed to repeat these numbers aloud throughout the trial. 

This articulatory suppression procedure is used to interrupt verbal encoding of the 

letter stimuli (Besner, Davies, & Daniels, 1981), which might otherwise allow 

participants to rely on systems other than visual working memory to perform the task. 

The numbers disappeared after 1000 ms, leaving a blank screen with the 

fixation point for 1000 ms, after which the memory array was shown for 100 ms. The 

succeeding dynamic mask array contained phase-scrambled transformations of all 

letters in the set, displayed in each circular aperture. Scrambling the Fourier phase 

spectrum of an image retains the spatial-frequency content while destroying overall 

form information. The mask was shown for 200 ms, comprising 10 different 

transformations displayed for 20 ms each. Mask onset occurred 20, 30, 60, 100, 170, 

290 or 500 ms after offset of the memory array. The stimulus onset asynchronies 

(SOAs)—that is, the set of delays between the onset of the memory array and the 

onset of the mask—were therefore 120, 130, 160, 200, 270, 390 or 600 ms. By 

concentrating SOAs at the lower end of the range, we could measure encoding rate 

more precisely.  

Onset of the test array always followed 1000 ms after onset of the memory 

array. In each test array, one letter was randomly changed to one of the remaining 

letters in the set. Participants were required to identify where the change had occurred 

by using the computer mouse to click on the circular aperture of the changed letter. 
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Feedback was provided: A high tone was played after a correct response, or a low 

tone after an incorrect response. The next trial commenced 1000 ms after feedback. 

Each participant completed 16 blocks per experiment—four blocks for each 

of four alphabets—over two or three weeks. Each block lasted approximately 

20 mins, and contained 210 trials in total (30 trials at each of seven SOAs). Within 

each block, participants were prompted to take a short break after completing each set 

of 70 trials. In total, each participant completed 3360 trials per experiment: 120 at 

each of the seven SOAs, for each of the four alphabets. 

Estimating perimetric complexity 

Perimetric complexity (κ) was defined as the inside and outside perimeter of 

the stimuli (Ptotal) squared, divided by the area (A), all divided by 4π, 

 𝜅 = 	 $total
%

&'(
. (Equation 1) 

Alphabets and fonts were selected to span a range of the perimetric 

complexity values reported by Pelli et al. (2006). Note, however, that their definition 

of perimetric complexity excludes the division by 4π that we introduce here. The 

simplest shape, with the lowest ratio of the squared perimeter to area, is a circle 

(squared perimeter = 4π2r2, area = πr2, ratio = 4π). By dividing by 4π, our measure of 

complexity assigns the value of 1 to a circle, the simplest shape, which may ease 

interpretation. Because the perimetric complexity of a stimulus depends on the 

effective resolution of the display (Watson, 2011), and the resolution of our display 
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likely differs from that of Pelli et al. (2006), we calculated values for this experiment 

using a MATLAB program based on the algorithm specified by Pelli et al. (2006)1. 

Equipped with estimates of perimetric complexity, we could also assess the 

number of features stored in VWM. Using κ as a proxy for the average number of 

features (up to a proportionality constant) contained within a letter of an alphabet, the 

number of stored features is the product of the number of stored items and 

complexity, 

 Number of features	 = 	𝐾×𝜅 (Equation 2) 

Estimating items stored in VWM 

Pashler’s (1988) formula was adapted for our change-detection task, as we 

asked participants to identify the location of the change rather than whether or not a 

change occurred. If the participant encodes, on average, a given number of objects in 

VWM (K) out of the total number of objects in the array (N), we make the 

straightforward assumption that they will detect the location of change on K out of N 

trials. On the remaining (K−N) trials, when they do not detect the location of change, 

the participants will have to guess from the array. When guessing, participants may 

randomly select one target from the array, such that they will have a 1 out of N 

probability of selecting the correct letter. Thus, the proportion of correct responses (P) 

will be 

 𝑃 = 	 -
.
+	 0

.
1 − -

.
. (Equation 3) 

Rearranged to estimate K, 

																																																								
1 The algorithm specified by Pelli et al. (2006) can be found as a footnote on page 4652 of the article. 
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 𝐾 = 	 $.30
034

5

. (Equation 4) 

We refer to Equation 4 as the random-guessing formulation. Of course, this 

assumes that when a participant cannot identify the location of the change, she selects 

randomly from the array. If a participant is able to inform her guess by inferring that it 

did not occur at any of the successfully encoded locations, she will have a 1 out of 

(N−K) probability of selecting the correct letter, such that 

 𝑃 = 	 -
.
+ 0

.3-
1 − -

.
. (Equation 5) 

When rearranged to estimate K, 

 𝐾 = 𝑃𝑁 − 1. (Equation 6) 

We refer to Equation 6 as the informed-guessing formulation. For simplicity, 

the analyses presented here have been conducted with the random-guessing 

formulation (Equation 6). The two formulations produce very similar estimates of K, 

and the conclusions do not change when the informed guessing formulation is used. 

For each alphabet, we considered K as a function of SOA. The slope of the 

initial part of this function is taken to be the encoding rate (Vogel et al., 2006). The 

function was expected to reach an asymptote at longer SOAs; this asymptote is 

interpreted as the capacity of VWM. We estimated encoding rate and capacity by 

fitting a combination of two linear functions using a least-squares procedure. The first 

function was restricted to pass through the origin, with gradient as a free parameter 

(encoding rate). The second was restricted to have zero gradient, with the constant y-

value as a free parameter (capacity). The domain of the first function was restricted to 

x-values below where the two functions intersected; the domain of the second was 
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restricted to x-values above that point. The result was a function of the general shape 

shown in Figure 1a. 

Modelling and model comparison 

We used likelihood-maximisation procedures to determine which of the four 

models depicted in Figure 1 best fit each participant’s data. Maximum-likelihood 

estimation fits a model to a set of observed data by finding those parameters that 

maximise the probability of the data. Each of the models has only two parameters, 

rate (slope of the initial linear function) and capacity (asymptote). In some models, 

one or both parameters were dependent on number of features (e.g. the rate parameter 

in the FrIc model). In these cases, the parameters were multiplied by the complexity 

value for each alphabet. For each participant, we fit each of the four models 

separately. We ran a hundred iterations of each fit, starting with different random 

parameter estimates. To facilitate interpretation and comparison, likelihood values of 

the best fits for each model were converted to Bayes Information Criterion (BIC) 

values (Schwarz, 1978). We used these BIC values to select the best-fitting model for 

each participant’s data, with a lower BIC indicating a better fit (Kass & Raftery, 

1995). The best-fitting model thus indicates whether the appropriate measure of 

encoding rate and capacity of VWM is items or features. 

Experiment 1 

In Experiment 1, encoding rate and capacity of VWM were estimated for 

letters from four different English fonts. Vogel et al. (2006) found that for coloured 

squares, encoding rate was 0.02 items per millisecond (one item every 50 

milliseconds), and capacity was approximately 2.5 items. Here, we use four fonts 

differing in average perimetric complexity, which has been shown to predict the 
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efficiency with which letters are identified (Pelli et al., 2006). This allowed us to 

examine whether a more complex letter takes longer to consolidate into VWM, and 

whether there is a smaller capacity in VWM for more complex letters relative to 

simpler ones.  

Methods 

Participants 

Four males and one female completed this experiment: two authors (WN & 

PG) and three colleagues unaware of the aims of the experiment. All participants 

reported normal or corrected-to-normal visual acuity. 

Stimuli 

On each trial, six letters were shown in each of the memory and test arrays. 

The letters came from four different English font alphabets: Helvetica Bold 

(lowercase), Courier (lowercase), Bookman Old Style (uppercase) and Künstler Script 

(uppercase). The letters were generated using TrueType fonts from Apple OSX 10.7.5 

and converted to greyscale bitmap images (see Figure 3). We selected these fonts to 

produce a spread of perimetric complexity; based on Pelli et al.’s (2006) calculations, 

initial estimates for each font were 5.3, 8.0, 11.1 and 35.9, respectively.2 Each 

alphabet comprised 20 different letters. The letters C, F, I, N, V and W were removed, 

as pilot studies indicated they were the most commonly confused with other letters. 

For each array, six letters were selected randomly without replacement. We used a set 

size of six because pilot studies indicated that smaller set sizes produced ceiling 

effects. 

																																																								
2 Pelli et al. (2006) report these values as 67, 100, 139 and 451. Here, we normalise these values by 
dividing by the complexity of the simplest possible object (4π). 
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Results and discussion 

Perimetric complexity 

We first calculated the mean perimetric complexity of each alphabet when 

displayed on our equipment. The means and the standard deviations are shown in 

Table 1. Absolute values changed somewhat, but the ordering of complexity was 

maintained from Pelli et al. (2006).  

Table 1 

Mean Perimetric Complexity of Alphabets in Experiment 1 

 Estimated 

Perimetric 

Complexity*  

Calculated Perimetric Complexity 

Alphabet Mean SD 

Helvetica 5.3 6.8 1.1 

Courier 8.0 7.4 1.0 

Bookman 11.1 10.3 1.6 

Künstler 35.9 27.1 5.4 

* Perimetric complexity value reported in Table A of Pelli et al. (2006), divided by 4π.  

Change-detection performance 

Figure 4a shows accuracy (percentage correct) pooled across participants as a 

function of SOA, for each of the four alphabets. Figure 4b shows the number of items 

(K) as a function of SOA for each alphabet; and Figure 4c shows the estimated 

number of features (Kκ) as a function of SOA for each alphabet. Performance 

increased monotonically before reaching a pleateau after about 270ms for all 

alphabets. Although our experiment was primarily designed for modelling at the level 

of the individual participant, we conducted preliminary analyses using one-way 



VISUAL WORKING MEMORY VARIES WITH FAMILIARITY 

 17 

repeated measures ANOVAs of rate and capacity, with alphabet as a within-subjects 

factor. There was a significant effect of alphabet on encoding rate (F3, 12 = 8.2, p = 

.003). Using Tukey’s HSD, we conducted pairwise comparisons between encoding 

rates for each alphabet. The mean encoding rate (in items per second) for Künstler (M 

= 16.5, SD = 9.2) was significantly different (p < .05) from the mean encoding rate 

for Helvetica (M = 41.9, SD = 20.0), Courier (M = 42.5, SD = 16.3), and Bookman (M 

= 48.5, SD = 22.9). There were no other significant differences between encoding 

rates. There was a significant effect of alphabet on capacity (F3, 12 = 199.1, p < .001). 

The capacity of VWM (in items) for Künstler (M = 1.1, SD = 0.7) was significantly 

different (p < .05) from the capacity of VWM for Helvetica (M = 4.2, SD = 0.6), 

Courier (M = 3.9, SD = 0.7), and Bookman (M = 4.16, SD = 0.7). There were no other 

significant differences between capacities. The low capacity estimate for Künstler (1.1 

items) was not due to floor effects, as performance was significantly above chance for 

each individual across all SOAs (all observed χ2 > 9.33, all p < 0.002).  

Modelling 

The maximum-likelihood procedure was conducted to fit each of the 

candidate models (Figure 1) separately for each participant. Figure 5a shows the 

ranking of BIC values of each model, for each participant. A lower value indicates a 

better fit of the model to the data. For all participants, the best-fitting model was IrFc. 

According to this model, encoding rate is set in terms of items, and VWM capacity is 

set in terms of features. However, visual inspection of the fits showed that the 

extremely different values we obtained for Künstler precluded any model from fitting 

well. We thus repeated the procedure with Künstler excluded (Figure 5b). 

BIC values were considerably lower for all models when the Künstler font 

was excluded. A difference of 10 between BIC values is typically interpreted to 
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indicate ‘decisive’ evidence in favour of the model with lower BIC (Kass & Raftery, 

1995). BIC values reduced by more than 1000 when Künstler was excluded, 

indicating overwhelmingly better fits to the data. With Künstler excluded, the best 

fitting model for each participants’ observed data was the IrIc model, which sets both 

encoding rate and capacity according to number of items. For every participant, BIC 

values for the IrIc model were at least 10 lower than for any other model. This is a 

strong indication that for these fonts, IrIc most accurately represents the workings of 

VWM. That is, for the Helvetica, Courier and Bookman fonts, the best model is one 

that quantifies encoding rate and VWM capacity in terms of items, regardless of their 

complexity.  

Discusssion 

Experiment 1 was conducted to determine the influence of perimetric 

complexity on the encoding rate and capacity of VWM. The shape of the encoding 

function observed by Vogel et al. (2006) for colour blocks was replicated with letter 

stimuli from different fonts. For all alphabets, performance on the change-detection 

task was poor when the mask was presented almost immediately following the 

memory array. As the mask was delayed further, increasing the amount of time for 

VWM encoding, performance gradually improved before reaching an asymptote. 

Encoding rate and VWM capacity did not differ significantly between Helvetica, 

Courier and Bookman, but was significantly different for Künstler. Among the three 

similar fonts, encoding rate did not decrease with increasing perimetric complexity, as 

would be predicted if feature binding was a limiting factor in VWM encoding. 

Similarly, the capacity of VWM did not decrease with increasing perimetric 

complexity, as would be predicted by resource models of VWM. Estimates of 
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capacity of VWM for these fonts were approximately equal to the capacity estimate 

reported by Alvarez and Cavanagh (2004) of 3.7 letters. 

Differences in the encoding rate and the VWM capacity for Künstler may be 

due to its greater complexity, but given the lack of variation among the other fonts, it 

may instead have been caused by participants’ lack of familiarity. Unlike the other 

fonts used in Experiment 1, Künstler is an uncommonly used decorative script, which 

is likely to be unfamiliar to observers. In their study of the relationship between 

perimetric complexity and identification efficiency, Pelli et al. (2006) discarded the 

first 400 trials using Künstler script, citing participants’ initial unfamiliarity with the 

letters. Maximum-likelihood estimation including Künstler indicated that IrFc, which 

defines encoding rate in terms of items and VWM capacity in terms of features, was 

the best-fitting model. However, the procedure appeared to be biased by the 

considerably different pattern of performance observed for Künstler. Excluding 

Künstler reduced BIC values by more than 1000, indicating a much better fit than any 

model with Künstler included. Here, maximum-likelihood estimation indicated that 

the best-fitting model was IrIc, which quantifies encoding rate and capacity of VWM 

in terms of items. This suggests that the perimetric complexity of the stimuli does not 

influence the encoding rate or the capacity of VWM for these stimuli. 

Alternatively, it is possible that using familiar stimuli precluded any effect of 

perimetric complexity on VWM processes. As Helvetica, Courier and Bookman are 

commonly used fonts, the visual system may more efficiently encode and store these 

letters in VWM. Familiarity may also allow participants to exploit diagnostic features 

that distinguish letters without requiring all features to be encoded. Unfamiliar stimuli 

may be required to reveal an effect of perimetric complexity on the encoding rate and 

capacity of VWM. 
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Experiment 2 

In Experiment 1, we found little to no effect of perimetric complexity on 

VWM encoding rate or capacity. One limitation of that experiment was that all fonts 

except Künstler were familiar to participants. It is unclear whether the latter yielded 

different results because of its higher perimetric complexity, or rather because it was 

unfamiliar. Here, we sought to examine the effect of perimetric complexity with 

unfamiliar sets of letters from languages other than English. In Experiment 1, 

complexity was partially confounded with familiarity; here, we can isolate any effect 

of complexity independent of familiarity with the memoranda. 

Methods 

Participants 

Five participants (two female) completed the experiment. They included two 

of the authors (WN & PG) and three participants who were unaware of the aims of the 

study and had not completed Experiment 1. All participants reported normal or 

corrected-to-normal visual acuity, as well as unfamiliarity with the alphabets used in 

the experiment. 

Stimuli 

Stimuli were presented in the same manner as for Experiment 1. However, 

only four symbols were presented in the memory and test arrays (Figure 6a). 

Presenting six symbols, as in Experiment 1, produced floor effects in pilot data. Four 

character sets were drawn from Braille, Hebrew, Arabic and simplified Chinese (see 

Figure 6b). For the Braille alphabet, we generated the symbols using the Apple 

Symbols font; for the Hebrew alphabet, the Times New Roman font; for the Arabic 
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alphabet, the Al Bayan font; and for the Chinese character set, the Yung font.3 We 

selected these fonts to span a wide range of perimetric complexity estimates, as 

reported by Pelli et al. (2006). For each set, we selected 20 characters at random from 

the 22 (Hebrew), 26 (Braille and Chinese) or 28 (Arabic) available in the chosen 

fonts. The items presented in each array were selected randomly without replacement 

from the 20 characters comprising each set.  

Results and discussion 

Perimetric complexity 

The means and standard deviations of perimetric complexity for each 

character set are shown in Table 2. On our equipment, the order of perimetric 

complexity values differed from those calculated by Pelli et al. (2006), but the mean 

for the most complex alphabet (Chinese, 11.9 features) was still almost double that for 

the simplest (Braille, 7.6 features). Most notably, the perimetric complexity for 

Braille was considerably higher than previously reported. Pelli et al.’s Braille symbols 

comprised abutting square elements, whereas our symbols comprised separated 

circular elements. Pelli et al.’s letters have lower complexity primarily because all 

adjacent square elements are merged, reducing the total perimeter, and complexity is 

proportional to the square of total perimeter.  

																																																								
3 Downloaded from http://psych.nyu.edu/pelli/software.html. 
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Table 2 

Mean Perimetric Complexity of Character Sets in Experiment 2 

 Estimated 

Perimetric 

Complexity  

Calculated Perimetric Complexity 

Character Set Mean SD 

Braille 2.2 7.6 1.4 

Hebrew 7.2 6.6 1.6 

Arabic 10.9 8.8 2.3 

Chinese 15.8 11.9 2.6 

* Perimetric complexity value reported in Table A of Pelli et al. (2006), divided by 4π.  

Change-detection performance 

Figure 7a shows the mean accuracy (percentage correct) as a function of 

SOA for each alphabet. Figure 7b shows K as a function of SOA for each alphabet; 

and Figure 7c shows the estimated number of features (Kκ) as a function of SOA for 

each alphabet. As in Experiment 1, a combination of two lines was fitted to estimate 

the encoding rate and capacity for each alphabet, separately for each participant. 

As in Experiment 1, we conducted a preliminary one-way repeated-measures 

ANOVA, which revealed a significant effect of character set on encoding rate (F3, 12 = 

13.2, p < .001). The encoding rate (in items per second) for Braille (M = 7.1, SD = 

5.0) was significantly different (p < .05) from the mean encoding rate for Arabic (M = 

15.1, SD = 8.4) and for Hebrew (M = 15.0, SD = 8.6). We found no other significant 

differences. The mean encoding rate for Chinese was 11.3 (SD = 6.9). There was no 

significant main effect of alphabet on VWM capacity (F3, 12 = .7, p = .59). Mean 

capacity (in items) for Braille was 1.5 (SD = 0.6); for Hebrew, 1.8 (SD = 0.8); for 

Arabic, 1.7 (SD = 0.5); and for Chinese, 1.6 (SD = 0.6). 
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Modelling 

Figure 8 shows the BIC values of each model for each participant. For four 

out of the five participants, the best-fitting model was IrIc, which quantifies both 

encoding rate and VWM capacity in terms of number of items. For one participant, 

there is ‘decisive’ evidence in favour of the model compared to the next most likely 

model (ΔBIC > 10); for two more, there is ‘strong’ evidence (6 < ΔBIC  < 10); and 

for one, ‘positive’ evidence (0 < ΔBIC < 6; Kass and Raftery, 1995). For the 

remaining participant, BIC values differ by only 3 between the best and worst model. 

Overall, we interpret this as good evidence in favour of the IrIc model. 

Discussion 

Experiment 2 was conducted to determine whether familiarity with the 

stimuli masked an influence of perimetric complexity on VWM limits in Experiment 

1. To do this, we replicated Experiment 1 with letters from alphabets that were 

unfamiliar to the participants. 

Mean encoding rate and VWM capacity for each of the character sets in 

Experiments 1 and 2 is shown in Figure 9. Most notably, encoding rate and capacity 

for Künstler in Experiment 1 were highly similar to those of the unfamiliar alphabets 

in Experiment 2. Encoding rate for Künstler was 16.5 items per second, which lies in 

the upper end of the range for unfamiliar alphabets. VWM capacity for Künstler (1.1 

items) is similar to VWM capacity estimates for unfamiliar alphabets, which varied 

between 1.5 and 1.8 items. The similarity of these values suggests that differences in 

encoding rate and VWM capacity between Künstler and the more common English 

fonts in Experiment 1 were likely due to familiarity with the stimuli. Pairwise 

comparisons indicated the encoding rate of Braille symbols was slower than the 
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encoding rate of Hebrew and Arabic characters; however, the magnitude of the 

difference is small compared to the difference between familiar and unfamiliar 

character sets. 

Maximum-likelihood estimation indicated that IrIc was the best-fitting of our 

candidate models (Figure 8). The model quantifies both encoding rate and the 

capacity of VWM in terms of items, rather than in terms of features. As in Experiment 

1, these results suggest that encoding rate and VWM capacity for unfamiliar stimuli 

do not vary proportionally with the number of features to be encoded (as indexed by 

perimetric complexity).  

Experiment 3 

Considering the results of Experiments 1 and 2 together, familiarity with 

memoranda appears to have a pronounced effect on VWM limits. In Experiment 3, 

we examined the effect of familiarity directly by matching the complexity of our 

stimuli. To do this, we compared VWM limits for English letters to VWM limits for 

BACS characters (Vidal et al., 2017), which were designed to match the features of 

English letters but are novel to our participants. The BACS characters contain the 

same number of strokes, junctions and terminations as English letters; in addition, we 

selected an English font that best matched the perimetric complexity of the BACS 

character set. This allows us to isolate the effect of familiarity while controlling for 

stimulus complexity. 

Methods 

Participants 
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Ten participants (6 males) with normal or corrected-to-normal vision 

completed the experiment. All were naïve to the aims, and none had participated in 

Experiments 1 or 2. 

Stimuli 

Stimuli were presented in the same manner as Experiment 2. English letters 

were Courier New lowercase, generated using TrueType fonts from Apple OSX 

10.7.5. Artificial letters were the serif BACS-2 character set4. The BACS equivalents 

of the most commonly confused English letters (C, F, I, N, V and W) were excluded, 

leaving 20 matched characters. The items presented in each array were selected 

randomly without replacement from the set of 20 for each alphabet (Figure 10). 

Results 

Perimetric complexity 

 The perimetric complexity of the set of Courier New letters (M = 11.6, SD = 

1.7) was not significantly different from the set of BACS letters (M = 10.8, SD = 2.4), 

t(38) = 1.21, p = .233. Thus the BACS and Courier New sets are comparable in 

perimetric complexity, and are matched on the number of junctions, strokes and 

terminations in each letter. 

Change-detection performance 

Figure 11a shows the mean accuracy (percentage correct) as a function of the 

SOA for each alphabet. Figure 11b shows K as a function of SOA for each alphabet; 

and Figure 11c shows the estimated number of features (Kκ) as a function of SOA for 

each alphabet. As in Experiments 1 and 2, a combination of two lines was fitted to 

																																																								
4 Downloaded from https://osf.io/s4738/. 
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estimate the encoding rate and capacity for each alphabet, separately for each 

participant. Mean encoding rate (in items per second) was significantly faster for 

Courier New letters (M = 22.8 SD = 6.1) than for BACS letters (M = 15.7, SD = 6.5), 

t(9) = 3.76, p < .01. Additionally, the capacity was significantly higher for Courier 

New letters (M = 2.5, SD = 0.5) than for BACS letters (M = 1.9, SD = 0.3), t(9) = 

5.17, p < .01.  

Discussion 

Experiment 3 was conducted to examine the effect of familiarity on VWM 

limits by matching the complexity of different letter sets. To do this, we used the 

BACS, an artificial character set designed to match the features of the English letters, 

such as the number of junctions, strokes and terminations. The BACS characters were 

not significantly different from the Courier New characters in perimetric complexity, 

an objective estimate of the number of features in an item. We found that encoding 

rate and capacity for the familiar English character set was significantly higher than 

the unfamiliar BACS character set. This is consistent with the results of Experiments 

1 and 2, which showed familiarity to be the primary determinant of VWM encoding 

rate and capacity. 

General Discussion 

The current study examined the influence of visual complexity and 

familiarity on the encoding rate and capacity of VWM for alphabetic stimuli. We used 

the perimetric complexity of letters as an objective, intrinsic measure of stimulus 

complexity, which estimates the number of basic visual features it contains. Our 

results suggest that encoding rate and capacity of VWM are not influenced by 

stimulus complexity. The best-fitting models of VWM architecture in Experiments 1 
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and 2 quantified the encoding rate and capacity of VWM in terms of items, rather than 

features. However, marked differences in encoding rate and the capacity are evident 

between familiar and unfamiliar fonts or alphabets. The commonly used English fonts 

of Helvetica, Courier and Bookman were encoded significantly faster than letters 

from the decorative Künstler font, and from the unfamiliar Braille, Hebrew, Arabic 

and Chinese alphabets. Additionally, the capacity of VWM for the common fonts was 

significantly higher than for the unfamiliar fonts (see Figure 9). This finding was 

replicated with familiar English letters rendered in Courier New font and unfamiliar 

letters from the Brussels Artificial Character Set. Although the two sets of letters were 

equivalent in visual complexity, the familiar English font showed a significantly faster 

encoding rate and higher VWM capacity.  

Complexity and VWM capacity 

Previous findings regarding the influence of stimulus complexity on the 

capacity of VWM have been mixed. Luck and Vogel (1997) reported that the capacity 

of VWM did not decrease for objects that were conjunctions of a greater number of 

features; on the other hand, Alvarez and Cavanagh (2004) reported varying capacity 

estimates, proportional to the visual information load of the item. In the present study, 

we defined stimulus complexity as perimetric complexity, an objective estimate of the 

number of features contained within a stimulus. We found that the capacity of VWM 

was invariant with the perimetric complexity of the memoranda. This suggests that 

additional features in the same dimension do not reduce VWM capacity, as Luck and 

Vogel (1997) found for additional features in different dimensions. Alvarez and 

Cavanagh’s findings differ from ours, suggesting that their visual-search measure of 

visual information load does not index low-level visual features. We note that 

perimetric complexity is only weakly correlated with subjective ratings of complexity 
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(Pelli et al., 2006). Subjective metrics (which may be influenced by familiarity) may 

be more predictive of VWM limits than the objective measure used in the current 

study. 

Complexity and VWM encoding rate 

In addition to VWM capacity, the current study examined the influence of 

stimulus complexity on the encoding rate of VWM. The best-fitting of our candidate 

models for change-detection performance was IrIc, which quantifies encoding rate in 

terms of objects, rather than features. The observation that encoding rate is invariant 

with the complexity of the stimulus suggests that the number of features to be 

encoded does not temporally limit the encoding process. Rather, the rate of VWM 

encoding appears to reflect the consolidation of feature-integrated objects. 

Encoding objects into VWM has been modelled as a two-stage process of 

individuation and consolidation (Wutz & Melcher, 2013). The individuation of an 

object—the process of binding features into a discrete unit—precedes the 

consolidation of that object into VWM. The efficiency with which letters are 

identified is inversely proportional to their perimetric complexity, such that letters 

seem to be identified via their constituent features (Pelli et al., 2006). It is thus 

reasonable to expect that the integration of features will be limited by perimetric 

complexity; however, this may occur sufficiently rapidly such that it does not place a 

bottleneck on VWM encoding. Wutz and Melcher (2013) found that enumeration 

performance for two-line drawings, a measure of object individuation, was limited 

when objects were presented for approximately 70 ms, but not when presented for 

approximately 120 ms. A binding limit of 120 ms has been reported for four-letter 

English words, along with a limit of 140 ms for pseudowords and 170 ms for pairs of 
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Chinese characters (Holcombe & Judson, 2007), suggesting that the binding of 

features for multiple letters may occur over this timescale. As the lowest SOA we 

used in the current study was approximately 120 ms, the features of each object 

already may have been bound into a unitary representation. Encoding rate would thus 

reflect the consolidation of feature-integrated units. 

Familiarity 

The encoding rate and capacity of VWM for familiar alphabets was higher 

than for unfamiliar alphabets. In Experiment 1, encoding rate for English letters of 

common fonts was approximately 45 items per second (22 ms per item), and capacity 

was approximately four items. This is consistent with the encoding rate of 20–30 ms 

per item previously reported by Gegenfurtner and Sperling (1993) in a cued recall 

task for English letters, and numerous findings that capacity is approximately four 

items (Awh et al., 2007; Cowan et al., 2005; Luck & Vogel, 1997). In Experiment 3, 

encoding rate for the Courier New font was approximately 23 items per second (43 

ms per item), which is similar to the encoding rate of 50 ms per item found for colours 

with the same memory array size by Vogel et al. (2006). The capacity of Courier New 

letters was approximately 2.5 items, which was lower than in Experiment 1, but 

nevertheless within the range reported in previous studies. Encoding rate for 

unfamiliar alphabets was approximately 12 items per second, and capacity was 

approximately 1.5 items. Estimates for Künstler, an uncommonly used decorative 

font, and for the Brussels Artificial Character Set, were comparable to estimates for 

unfamiliar letters. 

Taken together, these suggest an overall effect of familiarity on the encoding 

rate and capacity of VWM. Xie and Zhang (2016, 2017) suggest that having pre-
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existing long-term memory (LTM) representations of familiar stimuli enhances the 

speed of consolidation and capacity of VWM. Faster encoding and increased capacity 

were reflected in an event-related potential component known as the contralateral 

delay activity (CDA), which indexes the amount of encoded information in VWM 

(Vogel & Machizawa, 2004). CDA was significantly higher for first-generation 

(familiar) compared to recent-generation (unfamiliar) Pokémon characters for short 

encoding times, but not for longer times, consistent with a faster encoding rate. Our 

findings lead us to predict the same effect for familiar and unfamiliar letters, even 

when stimulus complexity is matched. 

Letters 

We found that VWM capacity was higher for familiar stimuli, but was not 

higher for less-complex (as assessed by perimetric complexity) stimuli. Pelli et al. 

(2006) reported that native readers exhibited a memory span of about four to five 

letters, whereas trained observers—who identified letters as efficiently as the fluent 

observers—could remember only about two (Pelli et al., 2006). That is, training 

novice observers improved identification efficiency to the level of fluent observers, 

but did not increase memory span. 

The extensive experience of fluent readers is likely to have produced neural 

changes that allow neural representations of letters unavailable to untrained readers. 

The visual word form area (VWFA) in the left inferior occipitotemporal cortex 

responds selectively to visually presented words and consonant strings, and its 

selectivity is experience-dependent: For example, responses to Hebrew words are 

stronger among Hebrew readers than non-readers of Hebrew (Baker et al., 2007). This 

suggests that detectors in the VWFA develop templates specific to letters from 
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overlearned alphabets. Dehaene, Cohen, Sigman and Vinckier (2005) propose a 

neural hierarchy of detectors in the visual system, beginning with simple feature 

detectors whose outputs are combined into increasingly abstract letter representations. 

This is consistent with functional imaging work revealing gradient of selectivity 

throughout the occipitotemporal cortex, through the VWFA (Vinckier et al., 2007). 

Repeated activation likely results in efficient pathways through this hierarchy only for 

familiar, overlearned characters. 

Conclusion  

The results of the current study indicate that the encoding rate and capacity of 

VWM do not vary with stimulus complexity, defined by number of basic visual 

features, but are markedly affected by familiarity with the memoranda. As encoding 

rate does not vary with complexity, we suggest that the binding of features occurs 

rapidly, within approximately 120 ms, after which feature-integrated objects are 

consolidated into VWM. The highest capacity estimates and fastest encoding rates 

were found for familiar English letters. This suggests that although letters are 

complex objects, adult expertise with them allows their representations to be activated 

rapidly and used for VWM consolidation. We propose that such encoding relies on an 

efficient neural pathway containing detectors for familiar letter shapes.  
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Figure 1. Storage in VWM as a function of SOA according to four models of VWM encoding. 

Different shades represent alphabets of different perimetric complexity. (a) RiCi model, by 

which encoding rate and capacity of VWM are quantified in terms of items, regardless of item 

complexity. (b) RiCf model, by which encoding rate is quantified in terms of items, but the 

capacity of VWM is defined by number of features. This results in different asymptotes for the 

alphabets of different complexities. (c) RfCi model, by which capacity of VWM is defined in 

terms of items, but encoding rate is quantified in terms of features. The encoding rate, 

reflected in the initial gradient of the function, thus varies for each alphabet according to 

complexity. (d) RfCf model, by which encoding rate and capacity of VWM are quantified in 

terms of features. Thus both the initial gradient and asymptote vary between alphabets 

according to complexity. 
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Figure 2. Stimulus sequence on a single trial. At the beginning of the trial, two digits were 

shown to either side of the fixation point. The memory array, containing different letters from 

the same alphabet, was presented for 100ms and followed by a blank screen. The dynamic 

mask contained phase-scrambled transformations of all letters in the alphabet, presented for 

200 ms. The SOA for the memory array and mask array was 120, 130, 160, 200, 270, 390, or 

600 ms on each trial. The test array, which was identical to the memory array except for a 

change in letter at one position, was presented 1000 ms after the memory array, and 

remained on the screen until the participant made a response. The participant responded to 

each trial by selecting the aperture in which they believed the change had occurred. For 

illustrative purposes, the stimuli shown here have been enlarged. 
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Figure 3. The twenty letter stimuli of each alphabet used in Experiment 1 (Helvetica, Courier, 

Bookman and Künstler). 
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Figure 4. Results from Experiment 1. (a) Mean percentage correct on the change-

detection task as a function of stimulus onset asynchrony (SOA) and alphabet. (b) 

Number of items encoded (K) as a function of SOA and alphabet. (c) Number of features 

encoded (Kκ) as a function of SOA and alphabet. The number of features was estimated 

by multiplying the perimetric complexity (κ; see Table 1) by K. Error bars show ±1 

standard error of the mean (SEM). For both (b) and (c), a two-part linear function was 

fitted for each alphabet; a line with a positive gradient representing the encoding rate, and 

a line with zero gradient at VWM capacity. 
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Figure 5. BIC values from maximum-likelihood model fitting in Experiment 1. (a) BIC 

values for each of the four candidate models including all four alphabets. BIC values for 

each participant are shown as crosses joined by a dashed line, and means across 

participants are shown as circles joined by a solid line. Models are ordered from lowest 

mean BIC value to greatest mean BIC value. A lower BIC value indicates a better fit. For 

4 out of 5 participants, the best-fitting model was the IrFc model, which quantifies 

encoding rate in terms of items and capacity in terms of features. For the other 

participant, the FrFc model, which quantifies encoding rate and capacity in terms of 

features and the IrFc model were equally the best-fitting. (b) BIC values from maximum-

likelihood model fitting in Experiment 1 with Künstler excluded. Here, the best-fitting 

model for all 5 participants was the IrIc model, which quantifies encoding rate and 

capacity in terms of items. 
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Figure 6. Stimuli for Experiment 2. (a) Example memory, showing letters from the Arabic 

alphabet. (b) The 20 character stimuli used for each alphabet (Braille, Hebrew, Arabic and 

Chinese). 
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Figure 7. Results of Experiment 2. (a) Mean percentage correct on the change-detection task 

as a function of the stimulus onset asynchrony (SOA) and alphabet. (b) Number of items 

encoded (K) as a function of SOA and alphabet. (c) Number of features encoded (Kκ) as a 

function of SOA and alphabet. Error bars show ±1 SEM. 
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Figure 8. BIC values from maximum-likelihood model fitting in Experiment 2 for each of the 

four candidate models. BIC values for each participant are shown as crosses joined by a 

dashed line, and means across participants are shown as circles joined by a solid line. 

Models are ordered from lowest mean BIC value to greatest mean BIC value. For all 

participants, IrIc was the best-fitting model, which quantifies encoding rate and capacity in 

terms of items. 
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Figure 9. Mean capacity and encoding rates for all alphabets used in Experiment 1 and 2. (a) 

Mean capacity shows two distinctive clusters for familiar letters and novel characters. (b) 

Mean encoding rate likewise shows two distinct clusters. Error bars show ±1 SEM. Horizontal 

bars represent the range of ±1 SEM for the mean across individuals of capacity and encoding 

rate, separately for familiar and unfamiliar stimuli. 
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Figure 10. The twenty letter stimuli used for each alphabet in Experiment 3 (Courier New and 

Brussels Artificial Character Set). 
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Figure 11. Results from Experiment 3. (a) Mean percentage correct on the change-detection 

task as a function of the stimulus onset asynchrony (SOA) and alphabet. (b) Number of items 

encoded (K) as a function of SOA and alphabet. (c) Number of features encoded (Kκ) as a 

function of SOA and alphabet. Error bars show ±1 SEM. 

	

 


