Associative learning changes multivariate neural signatures of working memory load
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A ‘theory map’ of visual working memory (Ngiam, 2023)
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We examine whether learned associations act

on working memory in an object-based manner

Multivariate neural signature tracks the number of E
content-independent pointers (mvLoad). (Thyer et al., 2022) <4
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Does associative learning (chunking) change

multivariate neural signals of working memory?

item-based working memories.
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Trained the mvLoad classifier to decode
the 2 random and 4 random conditions,
testing on all three conditions
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The 4 paired condition does shift towards
the 2 random condition but does not
cross the hyperplane.

Because the 2 random colors were shown
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Individual differences in multivariate decoding
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Associative learning changes
multivariate signatures of
working memory load.

Our results suggest a reduction
In the number of pointers being
assigned, and an additional
Independent signal for
long-term memory recruitment.




