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Why study attention and memory?

 Our attention is very limited
* Therefore, our attention is precious

* We should want the right things to
take up our attention!




Why study attention and memory?
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Why You Can't
Pay Attention—

‘nd How to Think
Deeply Again

JOHAN N
HARI

In my opinion, a very average book...

New York Times Bestseller,
Book of the Year by Financial
Times, etc.

Taps into the collective feeling that
we are losing our ability to focus




Why study attention and memory?

I’m a journalist working on a story about whether social media’s impact on attention spans is impacting professions that
require greater attention to detail such as surgeons.

Also, looking at whether there is a digital attention divide between Gen Z compared to older generations. As a result, have university
professors had to change their teaching methods because of attention span for younger people.

Is there an area or faculty in particular that could talk to me on this? Either on the teaching methods or the impact to medical professions such
as surgeons.

* Does social media impact attention spans? If so, in what ways and who?
* Is there an ‘attention divide’ between Gen Z and older generations?

* How is attention implicated and required in different professions?
Should teaching methods be tailored to varying attention spans?




Why study attention and memory?

WHY WE GET TAKEN IN
AND WHAT
WE CAN DO ABOUT IT

DANIEL SIMONS & CHRISTOPHER CHABRIS

The researchers behind the
“invisible gorilla” study!

We can be deceived when made
to attend to the wrong things.




1. How is information represented in mind?
2. A brief overview of multivariate decoding

3. Decoding the contents of working memory



What /s visual working memory?

* “The system responsible for maintaining visual information in a state of
heightened accessibility for ongoing perception and cognition.”

 This same definition could also describe visual attention
» Perhaps also visual imagery, psychological introspection

* The core question: How is information represented in mind?



Representations in the mind
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Location

Constituents?
lllusory objects?

Memories across
space and time?
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What /s visual working memory?

Object-based theory

“slot models”
(Luck and Vogel, 1997;
Zhang and Luck, 2008)

Luck, S. J., & Vogel, E. K. (1997). https://doi.org/10.1038/36846
Zhang, W., & Luck, S. J. (2008). https://doi.org/10.1038/nature06860
Alvarez, G. A., & Cavanagh, P. (2004). https://doi.org/10.1111/].0963-7214.2004.01502006.x

Wilken, P., & Ma, W. J. (2004). https://doi.org/10.1167/4.12.11

Feature-based theory

“resource models”

(Alvarez and Cavanagh, 2004;
Wilken and Ma, 2004)
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What /s visual working memory?

* An enduring theoretical framework has been

Object-based theory Feature-based theory
“resource models’

“slot models”
(Alvarez and Cavanagh, 2004;

(Luck and Vogel, 1997;
Zhang and Luck, 2008) versus Wilken and Ma, 2004)
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A brief overview of multivariate decoding
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Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of
systems neurosmence. Front/ers in systems neuroscience, 2, 249.
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Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of
systems neuroscience. Frontiers in systems neuroscience, 2, 249.
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dissimilarity matrix

Multidimensional
scaling (MDS)

dissimilarity

compute dissimilarity . . .
(1-correlation across space) | €. g . Log |St|C reg ression
classifier

Activity across EEG 'ﬁ “ activity patterns

electrodes 4 4
| Theoretical factors

brain or model

D|ffe e nt Set-S|ZeS \ experimental conditions

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of

systems neuroscience. Frontiers in systems neuroscience, 2, 249.



Multivariate classification of working memory
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Multivariate classification of working memory

Experiment 1: Color
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Multivariate classification of working memory
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Multivariate classification of working memory

Train: Set size 2 and 3
Test: Set size 1 and 4
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Remembering moving objects
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What /s visual working memory?

* An enduring theoretical framework has been

Object-based theory Feature-based theory
“resource models’

“slot models”
(Alvarez and Cavanagh, 2004;

(Luck and Vogel, 1997;
Zhang and Luck, 2008) versus Wilken and Ma, 2004)
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Pointers in working memory

* Pylyshyn (2009) proposed the visual system has an indexing mechanism
that keeps track of an individual object through its changes

* This index is abstracted from the contents of the object »

* We propose that items in working memory are assigned to a content-
iIndependent pointer

[ Location ]

content-independent
pointer




Pointers and tracking objects
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Pointers and tracking objects
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Pointers and tracking objects
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Pointers and tracking objects
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Motion silencing

Video from Jordan Suchow’s YouTube channel: https://www.youtube.com/watch?v=-KhPYdge9RU
Suchow, J. W., & Alvarez, G. A. (2011). Motion silences awareness of visual change. Current Biology, 21(2), 140-143.




Method

Subvocal suppression
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Method

Attentional tracking only
[track discs, ignore colors]
1 disc, 2 colors

1 disc, 4 colors

2 discs, 2 colors

2 discs, 4 colors

Attentional tracking and
working memory

[track discs and remember
colors]

1 disc, 2 colors

1 disc, 4 colors

2 discs, 2 colors

2 discs, 4 colors

96 trials per condition
16 blocks
20 participants




Behavioral results

Working memory performance

Attentional tracking performance (number of colors correct)
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Univariate measure — the event-related potential
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Track 2 discs, shown 4 colors
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Event-related potential — the contralateral delay activity
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CDA was calculated using the PO3/P0O4, PO7/P0S8, P3/P4, and P7/P8 electrode pairs



Event-related potential — the contralateral delay activity

Attentional tracking and working memory
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Event-related potential — the contralateral delay activity

Attentional tracking only Attentional tracking and working memory
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Multivariate classification
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Multivariate classification
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Classification accuracy
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dissimilarity matrix

dissimilarity

a) Empirical RDM
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a) Empirical RDM
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Conclusions




Conclusions




Conclusions

ATWM/ 12

» Distinct neural signals for

(tracking) and working memory
(remembering)

 Attending is not exactly

remembering!
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Does learning change working memory?
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Working memory is aided by long-term memory

A hallmark of our visual working memory system is its sharp capacity limit
* But this capacity limit can be overcome with familiarity:
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* Trained subjects to learn three color triplets



Training



Training




Awareness Test




 Only subjects who correctly produced all triplets were considered
“learners’




Training Results
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Multivariate classification of working memory
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Train 6 random versus 2 random, test 6
chunked
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Train 6 random versus 2 random, test 6
chunked

Multidimensional scaling
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Learners vs non-learners

Distance from hyperplane (a.u.)
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Individual differences

“Weak chunking”

"Strong chunking”
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Individual differences
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Individual differences
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Individual differences
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Multidimensional scaling on each subject
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Conclusions

* A multivariate neural signal for items in working memory shows
associative learning reduces the number of items stored in working
memory

» Furthermore, neural signatures of associative learning showed the
reduction only in those that successfully learnt the associations

* This is consistent with a chunking account — associative learning may
not allow one to circumvent item pointer limits



Thank you for your attention!



Bonus slide: why does learning fully reduce load
// learned condition not cross the hyperplane?

Working memory pointer axis
Position on 2R - 6R axis
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Bonus slide: what actually are pointers?

Variational autoencoder

Perception

Binding pool

Tokens

/kip connection

Bottleneck

e, P e Y e > = e

Early-stage binding

— Object-based perception; top-down attention

Independent feature maps

— Independent feature resources (see Shin and Ma, 2017)

Noisy representation

— Neural Population model (Schneegans & Bays, 2017)
— TCC model (Schurgin, Wixted and Brady, 2020)

Encoding and retrieval mechanisms
— Interference Model (Oberauer & Lin, 2017)
— Focus of attention

Late-stage (context) binding
— Discrete-slots model (Zhang and Luck, 2008)
— Item-based capacity limits



Bonus slide: are scientists (we) attending to the
right things?
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