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A quick introduction to me

[ study attention and working memory — how information is

selected and held 1n mind for ongoing perception and cognition.



A quick introduction to me

[ study attention and working memory — how information is

selected and held 1n mind for ongoing perception and cognition.

One key feature ot this system 1s that it 1s capacity-limited.
Measuring the capacity limits of visual attention and working

memory requires understanding how information 1s represented

in working memory.



The point of this talk

Cognitive theories ought to make predictions about neural signals
and decoding results, such as those from representational

similarity analysis.

A formal modeling approach that incorporates representation
as part of the cognitive model might help make theory-driven

predictions about neural representations.



Representations to neuroscientists

Other neuroscientists are using training sl sl aesphicsn

neural network models to achieve

human-like performance or using

machine learning to decode neural

f@prﬁs Cﬂta . OﬂS. compute dissimilarity

(1-correlation across space)

One such method is representational * “ activity patiers

similarity analysis:

brain or model

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Representational similarity analysis

The researcher collects

neuroimaging data under

experimental conditions

* ‘“ activity patterns

brain or model

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Representational similarity analysis

dissimilarity matrix

dissimilarity

compute dissimilarity
(1-correlation across space)

The researcher uses
machine learning to
decode the conditions

and computes the

experimental conditions

distance between

conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Representational similarity analysis

dissimilarity matrix similarity-graph icon

dissimilarity

compute dissimilarity
(1-correlation across space)

The dissimilarity can be

visualised using
multidimensional scaling
or other methods.

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Representational similarity analysis

dissimilarity matrix similarity-graph icon

dissimilarity

Do these results provide
a veridical basis for

compute dissimilarity
(1-correlation across space)

models of cognition?

We might be HARKing

and/or drawing ad-hoc

conclusions.

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Representational similarity analysis

dissimilarity matrix similarity-graph icon

We might create models
to predict the observed
representational

(dl S) Slmllarlty compute dissimilarity

(1-correlation across space)

* “ activity patterns

Condition

brain or model

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https://doi.org/10.3389 /neuro.06.004.2008
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Decoding load in working memory

Mean Delay RDM

SS1 Narrow
SS1 Broad {

SS2 Narrow Overlap -
SS2 Broad Overlap -

SS2 Superset Overlap -
SS2 Partial Overlap -
SS2 Mixed No Overlap -
SS2 Narrow No Overlap -
SS2 Broad No Overlap -

“cﬁi %‘Q‘AQ@‘\‘A%“%\\‘&Q@‘\@ £ “%‘\@“%‘\@@‘\@Q

W&
& o0 A q,\o‘bi \%“”\%&'& QWP (WO c\@g

wostsimier R Most Dissimile

Jones, H. M., Diaz, G. K., Ngiam, W. X. Q., & Awh, E. (2024). Psychological Science, 35(10), 1108-1138.




Decoding load in working memory

Mean Delay RDM

SS1 Narrow
Set Size 1

sS1 Broad|/

SS2 Narrow Overlapj -
SS2 Broad Overlapy

SS2 Superset Overlapf -

Set Size 2 SS2 Partial Overlapy -
SS2 Mixed No Overlapy |

SS2 Narrow No Overlap] |

SS2 Broad No Overlapy 1

“%(\‘b%@\\‘b%@‘\‘&

wostsimie [ Most Dissimile

Jones, H. M., Diaz, G. K., Ngiam, W. X. Q., & Awh, E. (2024). Psychological Science, 35(10), 1108-1138.




Decoding load in working memory
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Decoding load in working memory
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Decoding load in working memory

We were interested in how associative 1eaming influences W()rking

Memory operations.

One proposed operation 1s that associative learning leads to
“chunking” processes — representations where separate items are

bound into a ‘“‘chunk’.



Training

Trained subjects to learn three color triplets
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EEG

Perceptually
/ equivalent

Six random

g__m Six chunked
n o

Expectation: “chunking” results in a reduction of item-based load that
should be reflected in neural representations
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Train 6 random versus 2 random, test 6 chunked

Multidimensional scaling
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Train 6 random versus 2 random, test 6 chunked

Multidimensional scaling
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What can we infer from these results?
What cognitive model would predict or could explain this
pattern of representational similarity?



Awareness lest




Awareness lTest

Only subjects that recreated all triplets were considered “aware”




Training Results

0.45 —

0.35

Aggregate Data
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Learners vs non-learners

Learners (n = 18) Non-learners (n = 7)
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Multidimensional scaling on each subject
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Multidimensional scaling on each subject
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Multidimensional scaling on each subject

1.2 -

e | earners
®) O O N |
0. o 0 o Non-learners
We ought to have a %) ° o
cognitive model that ¢°87 o
: o
explains the neural &
: o 0.6 O o ©
representation and =~ ¢ o ¢
5 © o
make specific So4] © © o
predictions of the =&
representational 2 o o
Slmllarlty. so thatitis
falsifiable. , | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Distance from 2R - 6R axis



Multidimensional scaling on each subject

We ought to have a
cognitive model that
explains the neural
representation and
make specific
predictions of the
representational

similarity so that it is
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1.2 -

1.0 -

Position on 2R - 6R axis

O
N
I

0.0 -

O
oo
I

O
o
I

©
LN
1

e | earners
®) O O
o o o Non-learners
o
R S
¢ ° Potential trajectory of
R representational similarity
o ©o°~° . with stronger associative
O ® ¢ learning
¢ o
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Distance from 2R - 6R axis



Multidimensional scaling on each subject
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Representational similarity analysis

dissimilarity matrix similarity-graph icon

We need cognitive
models to predict the
observed

compute dissimilarity
(1-correlation across space)

representational
(dis)similarity

experimental conditions

Kriegeskorte, Mur, & Bandettini (2008). https: //doi.org/10.3389 /neuro.06.004.2008
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Do similarity ratings predict neural similarity?



Representations in formal cognitive models

Classic formal models of cognition would derive the psychological
representation using multidimensional scaling (MDS) of

similarity judgments
* Collect similarity ratings for pairs ot items in the stimulus set

* Reduce those ratings into a representation that best preserves
the distance between the items; the closer the items, the more

similar.



Representations in formal cognitive models

For historical reasons, the similarity-based MDS-representation
has been constdered the psychological representation

undetlying cognition.

But similarity judgments and cognition may not share the

same mental representation.

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual review of Psychology, 43(1), 25-53.
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Scence, 237(4820), 1317-1323.



Our modeling approach

In brief, we used Bayesian MCMC methods to recover the

latent representation of oriented lines used in three cognitive

tﬂSkS. Trial 1
+ t/_;_\> .
Trial 2 . . .
/\ .\ We use the observed similarity
—t —= . .
Tl 3 ratings to infer the latent
/+\ representation of those items.

Latent Ground Truth '
@ @




The cognitive tasks

Similarity comparison

Tomic, L., & Bays, P. M. (2024). Perceptual similarity judgments do not predict the distribution of errors in working memory. Journal of Experimental Psychology: 1 earning, Memory, and Cognition, 50(4), 535.



The cognitive tasks

c

Memory reproduction

Tomic, L., & Bays, P. M. (2024). Perceptual similarity judgments do not predict the distribution of errors in working memory. Journal of Experimental Psychology: 1 earning, Memory, and Cognition, 50(4), 535.



Similarity comparison

The representation does not match
the physical sttimulus space — 1t 1s

not exactly a diagonal line.

Clear deviations where close to
vertical lines appear more vertical,
and close to horizontal lines appear

more horizontal.
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Memory reproduction

The representation for oriented
lines do not exactly match the

physically presented stimulus.

In working memory, the oriented
lines are represented more towards
the oblique directions than they

actually are.

Physical
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Similarity comparisons and both reproduction tasks do not

share the same cognitive representation.

Similarity comparison Memory reproduction
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Does psychological similarity predict neural similarity?

Psychological similarity cannot be D
assumed to be the basis for . f':;-
cognition (and possibly not the S ;5’1’
basis for similarity of neural i y j"'
representations). ’ 5 b
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Takeaways

We ought to have formal cognitive models that predict and explain

the similarity of neural representations.

We cannot assume that psychological similarity will predict neural

similarity as the cognitive representation may not be the same.

How do we integrate formal models ot cognition with empirical

neuroscience? Come to MathPsych next year to find out...



Thank YOU! Preprint

ofs

william.ngiam(@adelaide.edu.au

@ https://palm-lab.github.io

“ (@williamngiam.github.io

“ Adelaide
University



mailto:william.ngiam@adelaide.edu.au
https://palm-lab.github.io/
https://palm-lab.github.io/
https://palm-lab.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Training
	Slide 18
	Slide 19
	Slide 20: EEG
	Slide 21: EEG
	Slide 22: Train 6 random versus 2 random, test 6 chunked
	Slide 23: Train 6 random versus 2 random, test 6 chunked
	Slide 24: Train 6 random versus 2 random, test 6 chunked
	Slide 25: Train 6 random versus 2 random, test 6 chunked
	Slide 26: Train 6 random versus 2 random, test 6 chunked
	Slide 27
	Slide 28
	Slide 29: Training Results
	Slide 30: Learners vs non-learners
	Slide 31: Multidimensional scaling on each subject
	Slide 32: Multidimensional scaling on each subject
	Slide 33: Multidimensional scaling on each subject
	Slide 34: Multidimensional scaling on each subject
	Slide 35: Multidimensional scaling on each subject
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

